首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
Using the data collected over the Southern Great Plains ARM site from 2006 to 2010, the surface Active Remote Sensing of Cloud(ARSCL) and Cloud Sat-CALIPSO satellite(CC) retrievals of total cloud and six specified cloud types [low, mid–low(ML), high–mid–low(HML), mid, high–mid(HM) and high] were compared in terms of cloud fraction(CF), cloud-base height(CBH), cloud-top height(CTH) and cloud thickness(CT), on different temporal scales, to identify their respective advantages and limitations. Good agreement between the two methods was exhibited in the total CF. However, large discrepancies were found between the cloud distributions of the two methods at a high(240-m) vertical grid spacing. Compared to the satellites, ARSCL retrievals detected more boundary layer clouds, while they underestimated high clouds. In terms of the six specific cloud types, more low- and mid-level clouds but less HML- and high-level clouds were detected by ARSCL than by CC. In contrast, the ARSCL retrievals of ML- and HM-level clouds agreed more closely with the estimations from the CC product. Lower CBHs tended to be reported by the surface data for low-, ML- and HML-level clouds; however, higher CTHs were often recorded by the satellite product for HML-, HM- and high-level clouds. The mean CTs for low- and ML-level cloud were similar between the two products; however, the mean CTs for HML-, mid-, HM- and high-level clouds from ARSCL were smaller than those from CC.  相似文献   

2.
西太平洋副热带高压下热对流降水结构特征的个例分析   总被引:19,自引:6,他引:13  
利用热带测雨卫星的测雨雷达和红外辐射计的探测结果,对2003年8月2日15时(北京时)中国东南部副热带高压下发生的热对流降水结构特征、云和降水云之间的关系进行了分析研究。大气背景分析表明,500 hPa副热带高压中心附近的较强上升运动和850 hPa的水汽通量辐合为此次午后热对流降水云团的发生提供了动力和水汽条件。热带测雨卫星的测雨雷达探测结果表明,热对流降水云团的水平尺度多为30~40 km,平均垂直尺度均超过10 km,最高达17.5 km;云团的最大近地面雨强超过50 mm/h。热对流降水云团的平均降水廓线表明,其最大降水率出现在5 km的高度,这一高度比估计的环境大气0℃层高度低1 km。与“98.7.20”中尺度强降水的对流降水廓线比较表明,两者的最大降水率高度相同,但热对流降水云团更深厚;在4 km高度至近地面,热对流的降水率减少速度比“98.7.20”强对流降水的快,表明前者雨滴在下降过程中因气温高而发生强烈蒸发。对降水云团顶部特征与近地面雨强关系的分析结果表明,雨顶高较低时,云顶高度变化范围大;当雨顶越高时,云顶高度与雨顶高度越相近;平均而言,给定地面降水率,云顶高度比雨顶高度高出1~4 km;当近地面雨强越大,则云顶高度和雨顶高度越高、且越相近。结果还表明,非降水云面积约占86%,晴空面积仅占2%,而降雨云面积约为云面积的1/8。  相似文献   

3.
东亚地区云垂直结构的CloudSat卫星观测研究   总被引:16,自引:5,他引:11       下载免费PDF全文
彭杰  张华  沈新勇 《大气科学》2013,37(1):91-100
本文利用卫星CloudSat同时结合了与其同轨道的卫星CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)2007至2009年3年的观测资料,将东亚地区划分为六个研究区域,着重研究了东亚地区云垂直分布的统计特征.结果表明:东亚地区不同高度的云量之和具有明显的季节变化趋势,夏季最大,春秋次之,冬季最小.海洋上空的单层云量最大值出现在冬季,而在陆地上空则出现在夏季.从云出现概率来看,东亚地区单层云出现的概率在春、夏、秋、冬季节依次为52.2%,48.1%,49.2%和51.9%,而多层(2层和2层以上)云出现的概率在春、夏、秋、冬季节分别为24.2%,31.0%,19.7%,15.8%.云出现的总概率和多层云出现的概率,在六个区域都呈现出夏季最大,冬季最小;对4个季节都呈现出东亚南部比东亚北部大,海洋上空比陆地上空大的特点,表明云出现的总概率的季节变化主要由多层云出现的概率的变化决定.东亚地区云系统中最高层云云顶的高度,在夏季最高,为15.9 km,在冬季最低,为8.2 km;在东亚南部和海洋上空较高,平均为15.1 km;在东亚北部较低,平均为12.1 km,且呈现东亚南北部之间差异较大的特点.东亚地区云系统的云层厚度基本位于1 km到3 km之间,且夏季大,冬季小;对同一季节,不同区域的云层厚度差别较小;当多层云系统中的云层数目增加时,云层的平均厚度减少,且较高层的云层平均厚度大于较低层的.云层间距的概率分布基本呈单峰分布,出现峰值范围的云层间距在1到3 km之间,各区域之间没有明显差别,季节变化也不大.本文的研究为在气候模式中精确描述云的垂直结构提供了有用的参数化依据.  相似文献   

4.
Several methods of determining the height of opaque clouds over the tropics were compared using geostationary satellite measurements. The possible use of ozone channel measurements around the 9.7-μm ozone absorption band was examined in conjunction with the infrared window (IRW; 10.8 μm), H2O (6.3 μm), and CO2 (13.4 μm) channels, which are generally used for the assignment of cloud heights. Cloud top heights were retrieved from Meteosat-8 measurements with the aid of radiative transfer calculations using reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) as inputs. By using cloud top heights from collocated CloudSat observations as a reference, cloud top heights were determined from the one-channel radiance, two-channel brightness temperature difference (BTD), and two-channel radiance ratio methods, and the respective results were then compared for clouds with geometrical thicknesses of > 4 km. Overall, the retrievals from the CO2-IRW ratio and O3-CO2 ratio methods are in substantial agreement with CloudSat observations, while the other methods either underestimate cloud top heights or demonstrate a lower ratio of successful height assignment. The O3-CO2 ratio method appears to be less practical than the CO2-IRW ratio method because it requires two absorption channels. Our comparison also shows that the BTD between the ozone and IRW channels yields information that is similar to that of the IRW channel alone. It further shows that the O3-IRW combination is not appropriate for the two-channel radiance ratio method. These results suggest that the inclusion of the ozone channel in BTD and ratio methods may not offer any significant improvement in convective cloud height retrieval over the tropics. In conclusion, the CO2-IRW ratio method appears to provide the most accurate retrievals for opaque clouds.  相似文献   

5.
利用2013~2016年的Aqua MODIS卫星和CloudSat卫星的二级产品资料,对发生在京津冀地区夏季的降水冰云和非降水冰云进行了统计。基于此,对比分析了两类冰云的云类型,研究了二者在云特征参数、云层数及垂直结构上的差异,并且探究了二者在不同通道下云特征参数的相对大小。结果表明:1)京津冀地区的降水冰云以深对流云和雨层云为主,分别占48.63%和34.65%,而非降水冰云以高层云和卷云为主,分别占55.62%和31.58%。2)降水冰云和非降水冰云的平均云顶温度、云顶高度、光学厚度、积分云水总量、有效粒子半径分别为230.99 K、10.90 km、53.26、937.98 g/m2、31.45m和236.17 K、10.10 km、12.81、209.00 g/m2、27.54 μm。3)降水冰云以单层云为主,占80.39%,双层云占18.75%;而非降水冰云仍以单层云为主,占85.35%,双层云则占14.38%,比降水冰云低。4)相较于非降水冰云,降水冰云中卷云和高积云云体位置较高,而高层云和深对流云位置较低。5)随高度变化,降水冰云冰水含量是双峰结构,而非降水冰云是单峰结构;二者的粒子数浓度则差异不大;非降水冰云的粒子有效半径在5~7.5 km随高度变化不大,而降水冰云则随高度减小。6)降水冰云的积分云水总量、光学厚度和粒子有效半径>模态[分别代表该云特征参数在1.6、2.1、3.7 μm通道中的数值,当n=1, 2, 3时,分别代表光学厚度(b1)、积分云水总量(b2)、有效半径这三种(b3)]的比例都高于非降水冰云,而二者在云参数模态的比例则有差异。  相似文献   

6.
By making use of TOVS Path-B satellite retrievals and ECMWF reanalyses, correlations between bulk microphysical properties of large-scale semi-transparent cirrus (visible optical thickness between 0.7 and 3.8) and thermodynamic and dynamic properties of the surrounding atmosphere have been studied on a global scale. These clouds constitute about half of all high clouds. The global averages (from 60°N to 60°S) of mean ice crystal diameter, De, and ice water path (IWP) of these clouds are 55 μm and 30 g m−2, respectively. IWP of these cirrus is slightly increasing with cloud-top temperature, whereas De of cold cirrus does not depend on this parameter. Correlations between De and IWp of large-scale cirrus seem to be different in the midlatitudes and in the tropics. However, we observe in general stronger correlations between De and IWP and atmospheric humidity and winds deduced from the ECMWF reanalyses: De and IWP increase both with increasing atmospheric water vapour. There is also a good distinction between different dynamical situations: In humid situations, IWP is on average about 10 gm−2 larger in regions with strong large-scale vertical updraft only that in regions with strong large-scale horizontal winds only, whereas the mean De of cold large-scale cirrus decreases by about 10 μm if both strong large-scale updraft and horizontal winds are present.  相似文献   

7.
During the Dynamics and Chemistry of the MarineStratocumulus (DYCOMS) experiment in July–August 1985, the NCAR Electra aircraft flew a series of flight legs just at the top of the marinestratocumulus cloud decks that cap the mixed layer off the coast of southernCalifornia. Because of the corrugated structure of the cloud-top, the aircraft, which was flown at a nearly constant level and adjusted only to maintain its altitude at the average cloud-top height, was alternately within and above the clouds – roughly half the time in each domain. These legs were used to examine the structure of the cloud-top by compositing the segments on either side of the cloud/clear-air interface, which was identified by the transitions of liquid water measured by the Forward Scattering Spectrometer Probe (either increasing or decreasing) through a threshold of 0.04 × 10-3 kg m-3.An equivalent vertical distance (EVD) from the cloud-top was obtained from the horizontal flight legs by estimating the average slope of the cloud-top from the cloud-top radiation temperature. The results show that a near discontinuity occurs in variables across cloud top over an EVD of 0.3 m, but that above this, the air has already been modified by boundary-layer air. Thus, cloud-top is not the limit of mixing of boundary-layer air. This mixing may extend to tens of metres or more. The bulk Richardson number in the vicinity of cloud-top increases from near zero within the cloud to about 1.2 at an EVD of 3–6 m above cloud. Fluctuations of the three velocity components within cloud are nearly equal; above cloud the vertical component structure function is about half the horizontal components. The scalar structure functions are about an order of magnitude higher above cloud than in cloud. The structure parameters of temperature and humidity measured just below cloud-top agree reasonably well with predicted values based on a previously-developed model for the clear convective boundary layer. Above cloud, the scalar structure parameters are much larger, but their interpretation is questionable, since this region does notcontain isotropic turbulence.  相似文献   

8.
基于CloudSat云分类资料的华北地区云宏观特征分析   总被引:4,自引:0,他引:4  
陈超  孟辉  靳瑞军  王兆宇 《气象科技》2014,42(2):294-301
利用2007年1月至2008年12月的CloudSat 2B-CLDCLASS-LIDAR云分类资料对华北地区(36°~42°N,110°~120°E)各类云在单层及多层云中的出现频率、平均高度及平均厚度进行统计分析。结果表明:华北地区单层云和多层云出现频率存在明显的季节变化,夏季最大,春秋次之,冬季最小。单层云的出现频率远高于多层云,单层云出现频率在春、夏、秋、冬4个季节分别为44.3%、46.1%、37.8%和32.8%,而多层云中2层云所占比例最大。单层云和多层云各云层平均高度、平均厚度分析显示,3层云上层云顶云底高度最高,3层云下层云顶云底高度最低,单层云平均厚度明显大于多层云,云层数越多,各云层的平均厚度越小。对不同类型云出现频率分析显示,卷云主要出现在单层云及多层云中、上层,高层云和高积云在单层云和多层云各云层中均占有一定的比例,层云主要出现在多层云下层,层积云、积云、深对流云主要出现在单层云及多层云下层,雨层云主要出现在夏季单层云中。卷云、高层云、高积云的平均高度及厚度在不同云系统中存在显著的差异。  相似文献   

9.
IASI(Infrared Atmospheric Sounding Interferometer)是搭载在欧洲METOP-A 卫星上,采用干涉分光技术的新一代超高光谱红外大气探测仪器,其光谱测量范围涵盖了多个吸收带,可用于反演大气、海洋、云和大气成分,为地球大气遥感、气象业务和科学研究提供了丰富的遥感资料,是各国学者关注的又一热点。为深入了解IASI 在国内的云产品情况,本文利用2008 年10 月15 日~12 月15 日期间IASI 在安徽寿县地区的云参数观测资料和中美 [美国能源部大气辐射测量(ARM)计划] 联合在安徽省寿县进行大气辐射综合观测试验期间,相同时段云雷达[ARM W-band(95 GHz)Cloud Radar,WACR]的观测资料进行了对比分析和验证。在以寿县ARM 移动观测设施(AMF)为中心,半径为20 km 的范围内,IASI(2 次/d)共有有效观测129 次,其中与WACR(1 次/2 s)匹配的IASI 有效观测共80 时次。结果表明:对于单层云,二者云高相关系数为0.8312,标准差为1.8423 km;对于双层及多层云,IASI 反演云顶高结果绝大多数在WACR 的最上和最下层云之间,且靠近较厚的云层。对比结果显示,一般情况下,IASI 反演云顶高结果明显低于WACR;IASI 反演云顶高结果受到视场中云量、云层厚度及云层中粒子浓度大小的影响:视场中云量越大,云层越厚,云层中粒子浓度越大,IASI 反演云高的结果越接近真实云高。  相似文献   

10.
利用CALIPSO激光雷达1km水平分辨率的云层产品,计算了中国及周边地区(0°~55°N,70°~140°E)多层云的出现概率,对不同高度多层云的水平分布及其季节变化特征进行了统计分析。结果表明:多层云的出现概率存在显著的区域差异,青藏高原和蒙古高原出现的概率较低,30°N以南的低纬度地区出现的概率较高;多层云系统中双层云占比最大,并且云层发生概率随着云层数的增多而减小;不同高度双层云和三层云的分布特征类似;多层云出现概率夏季最大,冬季最小,其中夏季双层云中“高云+高云”、“高云+中云”和三层云中“高云+高云+高云”、“高云+高云+中云”的配置在青藏高原主体的出现概率最大,而冬季单层云的低云、双层云中“高云+低云”及三层云中少量的“高云+高云+低云”配置在中国东北部海域、南海北部等30°N以北地区的出现概率高于其它季节。   相似文献   

11.
利用星载激光雷达资料研究东亚地区云垂直分布的统计特征   总被引:23,自引:6,他引:17  
已有研究表明: 云的垂直结构(简称CVS)是一个在卫星资料反演和气候模式预测中很重要的云特征。本文通过利用美国2006年刚发射的卫星CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 所负载的激光雷达Level 2_05km的云数据, 研究了东亚地区(18°N~53°N, 74°E~144°E) 云的垂直分布特征。结果表明: 东亚地区多层云云量在夏季、秋季、冬季、春季分别为43.6%、29.6%、21.1%、33.3%, 而多层云分布中双层云比例最大。云顶和云底高度除了随季节变化显著外, 还有明显的区域特征。单层云、 双层云以及三层云的云顶和云底高度的数据显示, 三层云中最上层的云顶和云底最高, 并始终高于两层云中最上层云的云顶和云底高度。平均云层厚度季节变化不明显, 其值普遍在0.9~2 km范围之间。而云层间距同样没有明显的季节和区域变化, 其出现的概率随距离的增大而减小。其中, 间距在0.35 km的概率最大, 占到将近50%。而间距在1.45 km附近的概率大约为15%, 高一点的可达到20%。  相似文献   

12.
汪会  郭学良 《气象学报》2018,76(6):996-1013
为了加强对青藏高原深对流云垂直结构的深入认识,利用TRMM、CloudSat和Aqua多源卫星观测资料及地基垂直指向雷达(C波段调频连续波雷达和KA波段毫米波云雷达)资料,对第三次青藏高原大气科学试验期间2014年7月9日13-16时(北京时)发生在那曲气象站附近的深厚强对流云和那曲气象站以西100 km左右的深厚弱对流云的垂直结构特征进行了分析,得到的结果如下:(1)深厚强对流云和深厚弱对流云的水平尺度均较小(10-20 km),垂直发展高度较高(15-16 km,均指海拔高度);深厚强对流云在0℃层以下雷达反射率因子递增非常快,表明对流云内固态降水粒子下落至0℃层以下后融化过程有很重要的作用;在对流减弱阶段有明显的0℃层亮带出现,亮带位于5.5 km左右(距地1 km);(2)对比TRMM测雨雷达和C波段调频连续波雷达观测到的雷达反射率因子,发现TRMM测雨雷达在11 km以下存在高估;(3)深对流云主要为冰相云,云内10 km以上主要是丰富小冰粒子,而10 km以下是较少的大冰晶粒子;深厚强对流云和深厚弱对流云的微物理过程都主要包括混合相过程和冰化过程,混合相过程分为两种:一种是-25℃(深厚强对流云)或-29℃(深厚弱对流云)高度以下以凇附增长为主,另一种是该高度以上主要以冰晶聚合、凝华增长为主,该过程冰晶粒子有效半径增长较快。这些空基和地基的观测证据进一步揭示了青藏高原深对流云的垂直结构特征,为模式模拟青藏高原深对流云的检验提供了依据。   相似文献   

13.
The Bayes Decision (BD) method was used to distinguish the corrective and stratiform components of cloud sys-tems from GMS-4 satellite data. A technique originally developed by Adler and Negri (1988, hereafter abbreviated AN) was improved for estimating the convective and stratiform cloud precipitation areas and rates of cloud systems from GMS satellite imagery. It has been applied to a tropical cyclonic cloud cluster observed over east coast area of China on September 23, 1992, which brought about flood disaster in that region. Overlaid 6-hour surface rainfall ob-servations show that the rainfall areas and amounts match with results from improved AN technique. The successful application of the Adler and Negri’s technique to convective and stratiform clouds provides encouragement for the use of this method over large region of mid-latitude China where radar data are not fully covered.  相似文献   

14.
基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构   总被引:5,自引:1,他引:4  
张晓  段克勤  石培宏 《大气科学》2015,39(6):1073-1080
本文利用CloudSat卫星资料,对青藏高原东部2006~2010年6~8月云垂直结构的空间分布进行分析,结果表明:(1)夏季青藏高原东部云发展可达到平流层,且高原东部云在5km以下以水云存在,5~10km以液相和固相共存的混态存在,在垂直高度10km以上以冰云存在。由于CloudSat卫星资料云相的反演问题,可能会造成水云和混态云的发展上限偏低,冰云的发展下限抬升。(2)研究区整层水汽输送和云水平均路径空间分布存在一定的差异性,云水含量纬向分布表现为在26.5°~30.5°N附近存在一个明显的峰值区,经向分布表现为95°E以西云水含量低于以东。(3)研究区以单云层为主,尤其在青藏高原主体。单云层平均云层厚度4182 m,云顶高度、云厚限于水汽的输送,表现为由南向北波动下降。多层云发生频率在27°N以北明显减少,说明强烈的对流运动更容易激发多层云的产生。  相似文献   

15.
本文利用2014年1月至2017年12月Ka毫米波雷达数据对北京地区云宏观特征进行统计分析。云出现率方面,4年平均值约36.3%;冬季最低,夏季最大;月出现率值9月最大,12月最小;出现率日变化有季节差异,春夏两季呈现中午(11:00,北京时间,下同)开始逐步升高至下午17:00后逐步下降的特点,增高幅度大于15%;冬、秋两季日变化特征不显著。高度方面,4年平均云底高约4.9 km,平均云顶高约7.2 km;云顶高和云底高的月变化特征明显,从年初1月开始逐步上升,在6月达到峰值,而后下降到12月达到低值;3~10月,高云(云底高>5 km)占约一半左右比例;厚度小于1 km的云在各月中所占比例最高;厚度1~4 km的云,厚度越大所占比例越低;特别地,厚度大于4 km的云所占比例在4~9月中仅次于厚度小于1 km云的比例。4年期间,北京地区单层云居多约占66.7%,两层云占比约25.2%,两层以上云占8.1%;冬季约80%的云为单层云,而6~9月云层分布变化最多,其中9月单层云比例最低约为40%。本文基于4年高时空分辨率雷达数据对北京地区云分布特征,特别是云垂直分布特征在数值上准确刻画,该项工作在已有云气候研究中尚未见开展,所获得的知识将对了解地区气候特征、区域模式云参数化选择提供参考。  相似文献   

16.
This study investigates the cloud macro- and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018, based on the observations from the aircraft, the Suomi National Polar-Orbiting Partnership (NPP) satellite, and the high-resolution Himawari-8 (H8) satellite. The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region. This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat, resulting in strengthened updrafts, enhanced radar echoes, higher cloud tops, and more and larger precipitation particles. In contrast, in the stratiform cloud region, after the Silver Iodide (AgI) seeding, the radar echoes become significantly weaker at heights close to the seeding layer, with the echo tops lowered by 1.4–1.7 km. In addition, a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km, and features such as icing seeding tracks appear. These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part. The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding; while in the stratiform region, a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding, which moves along the wind direction as width increases.  相似文献   

17.
The Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site has a rich history of actively sensed cloud observations. Fourteen years (1997–2010) of observations from the Millimeter Cloud Radar (MMCR), Micropulse Lidar (MPL), and Belfort/Vaisala Ceilometers are used to understand how instrument selection and sampling impacts estimates of Cloud Fraction (CF) at this location. Although all instruments should be used in combination for the best estimates of CF, instrument downtime limits available samples and increases observational errors, demanding that users make sacrifices when calculating CF at longer intervals relevant to climate studies. Selection of MMCR or MMCR + MPL cloud masks changes very little in the overall understanding of total CF. Addition of the MPL increases the 14-year average CF by 9 %, mainly through an increase in optically thin high clouds year-round, and mid-level clouds during the summer months. Splitting the period into two equal 7-year periods reveals negligible change in MMCR + MPL CF. For the MMCR, however, CF deceases by 6.1 %. This sudden change in CF occurs around the time the radar was upgraded, suggesting that this decrease is tied to hardware sensitivity or scanning strategy changes. Users must be cognizant of this and other issues when calculating CF from the variety of observations available at the ARM SGP site.  相似文献   

18.
针对北京南郊观象台的Ka波段毫米波雷达以及L波段探空设备的观测原理和特点,提出了适用于各设备的云垂直结构判定方法,并基于二者2016年12月13日至2017年3月13日长达91 d的时空同步观测数据,结合激光云高仪、葵花8卫星、全天空成像仪等多源辅助数据,对探空与毫米波雷达观测结果(包括云底高、云顶高、云层数等)进行了对比,并对云高偏差的原因进行了分析,结论如下:毫米波雷达与探空判定的云垂直结构普遍具有较好的一致性,统计时段探空观测云顶高度比毫米波雷达平均高422 m,而云底高度则平均偏低350.7 m,导致二者观测云高差异主要包括二者观测原理不同、探空仪湿延迟、气球漂移引起的时空匹配偏差、探空判识云高算法的局限性、降雨时毫米波雷达的衰减等多方面。  相似文献   

19.
获取准确的云高及其变化特征,对于揭示天气系统的演变以及改进气候模式具有重要作用。由于不同设备观测云高的不确定性,将锋区要素不连续变化理论引入云高分析中,将云底部、云顶部大气的交界过渡带区域视为云锋区,研究探空、毫米波雷达、风廓线雷达等不同类型设备观测要素在云锋区及云外环境大气的变化特征。对流云和层状云个例研究表明:在云锋区,温湿度及雷达反射率因子随高度的一阶、二阶导数均呈不连续现象(即一阶、二阶导数值在云内外和云锋区表现为不相等),风廓线雷达信噪比垂直梯度也出现突变,因此不同设备观测云高具有较好空间一致性,并得到云底和云顶高度的合理范围和相应判据;相对于层状云,对流云内外温度梯度差异以及云体内反射率因子二阶导数的脉动变化幅度均偏大,因此可作为区分二者的参考指标。  相似文献   

20.
基于FY-2C静止卫星红外和水汽通道资料,简单分析了发生在四川盆地的西南低涡暴雨云团生消过程,给出了一些有意义的云团生命特征。同时,结合相应的地面自动站降水资料,详细分析了卫星红外和水汽通道云顶亮温与对流云团降水之间的关系特征,结果表明:对于一完整对流降水过程,1小时内最低水汽亮温和水汽亮温增量能很好地描述地面1小时累计降水特征。然而,用静止卫星红外或水汽通道亮温来表征的云团降水特征是非常复杂的。尽管具有相同的最低云顶红外或水汽亮温,但对不同的对流过程其总体降水量级趋势不一样。而且,对于同一对流过程的不同发展阶段,即使出现云顶红外或水汽亮温一样,但其地面降水特征也是不一致的。甚至是对于同一时刻具有相同最低红外或最低水汽亮温特征的云,其降水落区与量级都不尽相同。正是这些复杂的降水特征,使得西南低涡对流云团的降水估算具有很大的难度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号