首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.  相似文献   

2.
On the basis of the IPCC B2, A1b and B1 baseline scenarios, mitigation scenarios were developed that stabilize greenhouse gas concentrations at 650, 550 and 450 and – subject to specific assumptions – 400 ppm CO2-eq. The analysis takes into account a large number of reduction options, such as reductions of non-CO2 gases, carbon plantations and measures in the energy system. The study shows stabilization as low as 450 ppm CO2-eq. to be technically feasible, even given relatively high baseline scenarios. To achieve these lower concentration levels, global emissions need to peak within the first two decades. The net present value of abatement costs for the B2 baseline scenario (a medium scenario) increases from 0.2% of cumulative GDP to 1.1% as the shift is made from 650 to 450 ppm. On the other hand, the probability of meeting a two-degree target increases from 0%–10% to 20%–70%. The mitigation scenarios lead to lower emissions of regional air pollutants but also to increased land use. The uncertainty in the cost estimates is at least in the order of 50%, with the most important uncertainties including land-use emissions, the potential for bio-energy and the contribution of energy efficiency. Furthermore, creating the right socio-economic and political conditions for mitigation is more important than any of the technical constraints.  相似文献   

3.
Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. However, some of the recent policy literature has focused on dangerous climatic change (DCC) rather than on DAI. DAI is a set of increases in GHGs concentrations that has a non-negligible possibility of provoking changes in climate that in turn have a non-negligible possibility of causing unacceptable harm, including harm to one or more of ecosystems, food production systems, and sustainable socio-economic systems, whereas DCC is a change of climate that has actually occurred or is assumed to occur and that has a non-negligible possibility of causing unacceptable harm. If the goal of climate policy is to prevent DAI, then the determination of allowable GHG concentrations requires three inputs: the probability distribution function (pdf) for climate sensitivity, the pdf for the temperature change at which significant harm occurs, and the allowed probability (“risk”) of incurring harm previously deemed to be unacceptable. If the goal of climate policy is to prevent DCC, then one must know what the correct climate sensitivity is (along with the harm pdf and risk tolerance) in order to determine allowable GHG concentrations. DAI from elevated atmospheric CO2 also arises through its impact on ocean chemistry as the ocean absorbs CO2. The primary chemical impact is a reduction in the degree of supersaturation of ocean water with respect to calcium carbonate, the structural building material for coral and for calcareous phytoplankton at the base of the marine food chain. Here, the probability of significant harm (in particular, impacts violating the subsidiary conditions in Article 2 of the UNFCCC) is computed as a function of the ratio of total GHG radiative forcing to the radiative forcing for a CO2 doubling, using two alternative pdfs for climate sensitivity and three alternative pdfs for the harm temperature threshold. The allowable radiative forcing ratio depends on the probability of significant harm that is tolerated, and can be translated into allowable CO2 concentrations given some assumption concerning the future change in total non-CO2 GHG radiative forcing. If future non-CO2 GHG forcing is reduced to half of the present non-CO2 GHG forcing, then the allowable CO2 concentration is 290–430 ppmv for a 10% risk tolerance (depending on the chosen pdfs) and 300–500 ppmv for a 25% risk tolerance (assuming a pre-industrial CO2 concentration of 280 ppmv). For future non-CO2 GHG forcing frozen at the present value, and for a 10% risk threshold, the allowable CO2 concentration is 257–384 ppmv. The implications of these results are that (1) emissions of GHGs need to be reduced as quickly as possible, not in order to comply with the UNFCCC, but in order to minimize the extent and duration of non-compliance; (2) we do not have the luxury of trading off reductions in emissions of non-CO2 GHGs against smaller reductions in CO2 emissions, and (3) preparations should begin soon for the creation of negative CO2 emissions through the sequestration of biomass carbon.  相似文献   

4.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

5.
基于典型城市站太原站2018年3月—2019年2月的大气CO2在线观测资料,利用筛分法(Meteorological filtering method, MET)和黑碳示踪法(Black Carbon tracer, BC)进行本底/非本底的筛分,得到了本底浓度的变化特征。结果表明,太原大气CO2浓度季均值冬季最高,夏季最低;不同季节呈“单峰型”日变化特征,日振幅均在26.0×10-6以上;4个季节CO2浓度与地面风速存在显著负相关关系;CO2浓度抬升区域主要受当地工业布局的影响,最大抬升幅度在秋季达17.4×10-6;使用气象筛分法(MET)得到年均本底浓度为(431.4±19.9)×10-6,人为排放等对其影响为23.5×10-6,年振幅比同纬度其它本底站大,为34.5×10-6;黑碳示踪法(BC)得到冬季季均本底浓度为(445.0±22.9)×10-6,比MET筛...  相似文献   

6.
An idealized coupled general circulation model is used to demonstrate that the surface warming due to the doubling of CO2 can still be stronger in high latitudes than in low latitudes even without the negative evaporation feedback in low latitudes and positive ice-albedo feedback in high latitudes, as well as without the poleward latent heat transport. The new climate feedback analysis method formulated in Lu and Cai (Clim Dyn 32:873–885, 2009) is used to isolate contributions from both radiative and non-radiative feedback processes to the total temperature change obtained with the coupled GCM. These partial temperature changes are additive and their sum is convergent to the total temperature change. The radiative energy flux perturbations due to the doubling of CO2 and water vapor feedback lead to a stronger warming in low latitudes than in high latitudes at the surface and throughout the entire troposphere. In the vertical, the temperature changes due to the doubling of CO2 and water vapor feedback are maximum near the surface and decrease with height at all latitudes. The simultaneous warming reduction in low latitudes and amplification in high latitudes by the enhanced poleward dry static energy transport reverses the poleward decreasing warming pattern at the surface and in the lower troposphere, but it is not able to do so in the upper troposphere. The enhanced vertical moist convection in the tropics acts to amplify the warming in the upper troposphere at an expense of reducing the warming in the lower troposphere and surface warming in the tropics. As a result, the final warming pattern shows the co-existence of a reduction of the meridional temperature gradient at the surface and in the lower troposphere with an increase of the meridional temperature gradient in the upper troposphere. In the tropics, the total warming in the upper troposphere is stronger than the surface warming.  相似文献   

7.
We investigate the large-scale oceanic features determining the future ice shelf–ocean interaction by analyzing global warming experiments in a coarse resolution climate model with a comprehensive ocean component. Heat and freshwater fluxes from basal ice shelf melting (ISM) are parameterized following Beckmann and Goosse [Ocean Model 5(2):157–170, 2003]. Melting sensitivities to the oceanic temperature outside of the ice shelf cavities are varied from linear to quadratic (Holland et al. in J Clim 21, 2008). In 1% per year CO2-increase experiments the total freshwater flux from ISM triples to 0.09 Sv in the linear case and more than quadruples to 0.15 Sv in the quadratic case after 140 years at which 4 × 280 ppm = 1,120 ppm was reached. Due to the long response time of subsurface temperature anomalies, ISM thereafter increases drastically, if CO2 concentrations are kept constant at 1,120 ppm. Varying strength of the Antarctic circumpolar current (ACC) is crucial for ISM increase, because southward advection of heat dominates the warming along the Antarctic coast. On centennial timescales the ACC accelerates due to deep ocean warming north of the current, caused by mixing of heat along isopycnals in the Southern Ocean (SO) outcropping regions. In contrast to previous studies we find an initial weakening of the ACC during the first 150 years of warming. This purely baroclinic effect is due to a freshening in the SO which is consistent with present observations. Comparison with simulations with diagnosed ISM but without its influence on the ocean circulation reveal a number of ISM-related feedbacks, of which a negative ISM-feedback, due to the ISM-related local oceanic cooling, is the dominant one.  相似文献   

8.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   

9.
 The atmospheric CO2 concentrations have been reconstructed over the past 600 ka based on regression between the Vostok CO2 data and the SPECMAP oxygen isotope values. A lag of 4.5 ka (CO2 preceding δ18O) gives the best results. A polynomial of order 5 explains 66% of the Vostok CO2 variance over the last 220 ka. The Northern Hemisphere ice-sheet volume was simulated over the past 575 ka using the LLN 2-D model, forced by insolation and these statistically reconstructed atmospheric CO2 concentrations. The simulated ice volume fluctuations resemble the deep-sea oxygen isotope variations. CO2 of interglacial level is necessary for explaining both the interglacial at oxygen isotopic stage 11 and our present-day interglacial.  相似文献   

10.
利用2004年以来东亚地区10个本底观测站大气φ(CO2)观测资料,分析了各站大气φ(CO2)的变化特征及其各站之间的差异,讨论了下垫面特征、源汇作用等对φ(CO2)变化的影响.结果表明:10个本底站大气月均φ(CO2)有明显的季节变化,高值多出现在冬春等寒冷季节,而低值则多出现在6—9月,属于北半球的夏季;大气φ(CO2)日变化趋势较为一致,15时(当地时间)前后达到全天最低,随后φ(CO2)升高,并在日落后继续积累,至清晨7时(当地时间)前后达到全天最高,之后φ(CO2)随着太阳辐射的增强而逐渐降低,且平均φ(CO2)水平与下垫面植被量成反比,φ(CO2)日变化的幅度与下垫面植被量成反比.作为全球基准站之一的瓦里关山站,2004—2008年φ(CO2)年均值逐年增加,年增长率为2.28×10-6/a.  相似文献   

11.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   

12.
Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) in the U.S. Central Great Plains (Akron, Colorado) were simulated using the CERES V4.0 crop modules in RZWQM2. The CC scenarios for CO2, temperature and precipitation were based on a synthesis of Intergovernmental Panel on Climate Change (IPCC 2007) projections for Colorado. The CC for years 2025, 2050, 2075, and 2100 (CC projection years) were super-imposed on measured baseline climate data for 15–17 years collected during the long-term WF and WCF (1992–2008), and WCM (1994–2008) experiments at the location to provide inter-annual variability. For all the CC projection years, a decline in simulated wheat yield and an increase in actual transpiration were observed, but compared to the baseline these changes were not significant (p > 0.05) in all cases but one. However, corn and proso millet yields in all rotations and projection years declined significantly (p < 0.05), which resulted in decreased transpiration. Overall, the projected negative effects of rising temperatures on crop production dominated over any positive impacts of atmospheric CO2 increases in these dryland cropping systems. Simulated adaptation via changes in planting dates did not mitigate the yield losses of the crops significantly. However, the no-tillage maintained higher wheat yields than the conventional tillage in the WF rotation to year 2075. Possible effects of historical CO2 increases during the past century (from 300 to 380 ppm) on crop yields were also simulated using 96 years of measured climate data (1912–2008) at the location. On average the CO2 increase enhanced wheat yields by about 30%, and millet yields by about 17%, with no significant changes in corn yields.  相似文献   

13.
利用瓦里关和上甸子大气本底站观测的月平均CO2浓度数据对GOSAT卫星反演的CO2浓度数据进行验证,结果表明GOSAT产品与台站观测数据有较好的一致性.利用2009年6月—2011年5月GOSAT反演的CO2浓度数据,分析了江苏地区CO2浓度的时空变化特征,结果表明:1)975 hPa高度层CO2浓度高于850 hPa高度层,CO2浓度的水平变化要小于垂直变化;2)在季节变化上,CO2浓度冬季最高,夏季最低,这可能与植被光合作用的强弱变化有关;比较前后两年的CO2浓度数据,夏季和秋季的增速较快,冬季和春季的增速较慢;3)在日变化上,发现徐州和南京站02时CO2浓度最高,14时CO2浓度最低,这可能也与植被光合作用的强弱有关.  相似文献   

14.
We use a reduced complexity climate model with a three-dimensional ocean component and realistic topography to investigate the effect of stratification-dependent mixing on the sensitivity of the North Atlantic subpolar gyre (SPG), and the Atlantic meridional overturning circulation (AMOC), to idealized CO2 increase and peaking scenarios. The vertical diffusivity of the ocean interior is parameterized as κ ∼ N −α, where N is the local buoyancy frequency. For all parameter values 0 ≤ α ≤ 3, we find the SPG, and subsequently the AMOC, to weaken in response to increasing CO2 concentrations. The weakening is significantly stronger for α ≥ αcr ≈ 1.5. Depending on the value of α, two separate model states develop. These states remain different after the CO2 concentration is stabilized, and in some cases even after the CO2 concentration has been decreased again to the pre-industrial level. This behaviour is explained by a positive feedback between stratification and mixing anomalies in the Nordic Seas, causing a persistent weakening of the SPG.  相似文献   

15.
 The long-term adjustment processes of atmosphere and ocean in response to gradually increased atmospheric CO2 concentration have been analysed in two 850-year integrations with a coupled atmosphere-ocean general circulation model (AOGCM). In these experiments the CO2 concentration has been increased to double and four times the initial concentration, respectively, and is kept fixed thereafter. Three characteristic time scales have been identified: a very fast response associated with processes dominated by the atmospheric adjustment, an intermediate time scale of a few decades connected with processes in the upper ocean, and adjustment processes with time scales of centuries and longer due to the inertia of the deep ocean. The latter in particular is responsible for a still ongoing adjustment of the atmosphere-ocean system at the end of the integrations after 850 years. After 60 years, at the time of CO2 doubling, the global mean near-surface air temperature rises by 1.4 K. In spite of the constant CO2 concentration during the following centuries the warming continues to 2.6 K after 850 years. The behaviour of the quadrupling run is similar: global mean near-surface air temperature increases by 3.8 K at the time of CO2 quadrupling and by 4.8 K at the end of the simulation. The thermohaline circulation undergoes remarkable changes. Temporarily, the North Atlantic overturning circulation weakens by up to 30% in the CO2 doubling experiment and up to 50% in the CO2 quadrupling experiment. After reaching the minimum the North Atlantic overturning slowly recovers in both experiments. Received: 23 August 1999 / Accepted: 27 April 2000  相似文献   

16.
We present several equilibrium runs under varying atmospheric CO2 concentrations using the University of Victoria Earth System Climate Model (UVic ESCM). The model shows two very different responses: for CO2 concentrations of 400 ppm or lower, the system evolves into an equilibrium state. For CO2 concentrations of 440 ppm or higher, the system starts oscillating between a state with vigorous deep water formation in the Southern Ocean and a state with no deep water formation in the Southern Ocean. The flushing events result in a rapid increase in atmospheric temperatures, degassing of CO2 and therefore an increase in atmospheric CO2 concentrations, and a reduction of sea ice cover in the Southern Ocean. They also cool the deep ocean worldwide. After the flush, the deep ocean warms slowly again and CO2 is taken up by the ocean until the stratification becomes unstable again at high latitudes thousands of years later. The existence of a threshold in CO2 concentration which places the UVic ESCM in either an oscillating or non-oscillating state makes our results intriguing. If the UVic ESCM captures a mechanism that is present and important in the real climate system, the consequences would comprise a rapid increase in atmospheric carbon dioxide concentrations of several tens of ppm, an increase in global surface temperature of the order of 1–2°C, local temperature changes of the order of 6°C and a profound change in ocean stratification, deep water temperature and sea ice cover.  相似文献   

17.
The fractions of local traffic (LT), urban background (UBG) and regional background (RBG) of the particle pollution at a traffic-influenced kerbside in Dresden, Germany, were determined by measurements of size-segregated mass concentration, chemical composition and particle size distributions in a network of five measurement stations partly existing and partly set up for this study. Besides the kerbside station, one urban background site and three rural sites were included in the study. Using data from these different sites, the LT, UBG, and RBG contributions were calculated, following the approach of Lenschow et al. (2001). At the kerbside site, 19% of the total number concentration (DpSt = 10–600 nm) could be attributed to the RBG, 15% to the UBG, and 66% to the LT immediately nearby. Particle mass concentrations up to Dpaer = 420 nm RBG amounts to 68%, UBG to 21%, and LT only to 11%. Highest mass concentrations were observed at all stations in autumn and winter during easterly inflow directions. The local traffic fraction of PM10 mass at the kerbside station was found to be 30% for westerly inflow, but only 7% for southeasterly inflow due to the dominating transport fraction from up to 80% of the particle mass at this inflow direction. Size-resolved investigation showed the main fractions in both the particle size ranges of Dpaer = 0.42 to 1.2 and 0.14 to 0.42 μm at all stations. The main components sulphate, ammonium and total carbon showed higher concentrations at south-eastern/eastern inflow in autumn at all stations, while nitrate at the kerbside and urban background site was higher during westerly inflow in winter. The chemical composition at the regional background site at westerly inflow (12% nitrate, 8% sulphate, 11% total carbon) was significantly different from that at easterly inflow (3% nitrate, 15% sulphate, 22% total carbon). The prevailing part of the ionic mass was always found in the fine particle range of Dpaer = 0.14 to 1.2 μm at all stations. For all inflow directions highest total carbon concentrations were observed at the kerbside station, especially in the ultra-fine size range of Dpaer = 0.05 to 0.14 μm with up to 30% of the whole carbon. PAH concentrations were always higher at south-eastern/eastern inflow especially during wintertime. Trace metal components and silicon were found mainly in the coarse mode fraction at the kerbside resulting from abrasion or resuspension.  相似文献   

18.
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.  相似文献   

19.
It is shown that the slope of energy spectrum obtained from the velocity solution of Kdv-Burgers equation lies between -5/3 and -2 in the dilogarithmic coordinates paper. The spectrum is very close to one of Kolmogorov’s isotropic turbulence and Frisch’s intermittent turbulence in inertial region. In this paper, the Kdv-Burgers equation to describe atmospheric boundary layer turbulence is obtained. In the equation, the 1 / Re, corresponds to dissipative coefficient v, to dispersive coefficient β, then (v/ 2β)2 corresponds to .We prove that the wave number corresponding to maximum energy spectrum decreases with the decrease of stability (i.e., the increase of in eddy-containing region. And the spectrim amplitude decreases with the increase of (i.e., the decrease of stability). These results are consistent with actual turbulence spectrum of atmospheric surface layer from turbulence data.  相似文献   

20.
 The Louvain-la-Neuve climate model (here referred to as the LLN 2-D model has been used extensively to simulate the Northern Hemisphere ice volume under both the insolation and CO2 forcings. The period analysed here covers the last 200 ky. First, sensitivity analyses to constant CO2 concentration were performed. The model was accordingly forced by insolation changes only, the CO2 concentration being kept constant to respectively 210, 250 and 290 ppmv. Results show that the simulated ice volume variations are comparable to the geological reconstructions only when the CO2 concentration is low (210 ppmv) and that the sensitivity of the simulated Northern Hemisphere ice volume to CO2 is not constant through time. Second, three CO2 reconstructions were used to force the LLN 2-D model in addition to insolation. Results show (1) a better agreement with the SPECMAP oxygen isotope time series, in particular as far as the amplitude of the signal is concerned, and (2) that the simulated Northern Hemisphere ice volume is not very sensitive to the slight differences between these three reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号