首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
利用 CloudSat卫星和TRMM 卫星数据,对比分析2013年5个不同强度的热带气旋过程中气旋眼壁及周围螺旋云带的云宏微观结构特征、热力结构和降水特征。结果表明:发展成熟的气旋,冰相云主要分布在5 km 以上的高度。冰粒子有效半径随高度增加减小,冰水含量随高度整体呈现先增长后减小的趋势,冰粒子数浓度随高度增加而增加。热力结构及降水方面,在眼区上空,除了一个众所周知的暖心区外,在眼区外部附近也可能出现一个暖区,高度约8~15 km。降水率水平分布表现为大范围的层云降水中夹杂着独立的对流性降水,垂直降水一般从地面延伸到7.5 km,其大值区主要集中在5 km以下。在距离气旋中心较远的外围云系上层,也可能会有较多冰粒子存在,这主要是由于气旋眼壁云墙生成的冰粒子被带到外围对流云系后二次抬升所致。  相似文献   

2.
基于WRF数值模式,采用Lin微物理方案,对中国南方地区一次冷锋降水过程进行模拟试验,并用CloudSat观测数据对模式模拟的云量、云液态水和云冰水含量的垂直分布特征进行检验。结果表明:模式模拟云量的垂直分布范围小于CloudSat观测到的分布范围,模拟的云量在低空往往出现缺失,模式可以较好地模拟出CloudSat探测到的深对流云的分布,但对零散分布的小尺度云团模拟效果较差;模式模拟的云液态水分布范围也小于CloudSat观测到的分布范围,云液态水含量值略低于CloudSat观测值,对CloudSat观测的云液态水含量值较低的区域,模式往往不能模拟出云液态水的存在;模式模拟的云冰水垂直分布特征与CloudSat观测结果较为一致,特别是对冰水含量大值中心的位置模拟效果较好,但模式模拟的云冰水含量值远低于CloudSat观测值。整体来看,模式对云冰水垂直分布的模拟效果优于对云液态水的模拟,但Lin微物理方案对云液态水和云冰水的模拟还需进一步改进与完善。  相似文献   

3.
利用 CloudSat卫星数据处理中心(Cloudsat Data Processing Center,CloudSat DPC)提供的CloudSat卫星数据、欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的ERA5再分析资料和美国国家航空航天局(National Aeronautics and Space Administration,NASA)提供的 Aqua卫星可见光云图,对冬春季发生在大西洋上四个爆发性气旋个例的云微物理参量垂直分布特征进行了分析。结果表明:爆发性气旋中心云系多为层积云或积云,中心外围云系以雨层云为主,雨层云外部往往伴随着相似高度的高层云,气旋冷锋云带内以雨层云、高层云和高积云为主,冰粒子出现的最低高度与0℃等温线高度几乎重合;冰粒子有效半径随高度的增加而减小,而冰粒子数浓度随高度増加而増大;冰水含量大值区主要位于雨层云中部;液态水主要分布在高层云和层积云底部,冬季爆发性气旋个例内的液态水含量大于春季。  相似文献   

4.
为了解降水云与非降水云相应的微波信号、云水、雨水及潜热特征,文中利用热带测雨卫星搭载的测雨雷达、微波成像仪及红外辐射计探测的匹配融合结果,就2004年8月“云娜”台风进行了个例分析研究。结果表明:“云娜”台风过程中深厚降水云占79%,中云和低云降水仅分别占10.6%和10.4%;非降水低云所占比例最大(45.5%),高云其次(34.1%)。降水云中大粒子居多,非降水云粒子有效半径分布宽。深厚降水云中冰、水含量成正比;中等厚度降水云中的冰含量相对稳定,但液态水含量变化大;深厚和中等厚度非降水云中的冰、水含量皆成反比。对降水率、气柱潜热、气柱云水和云冰沿台风径向分布的分析结果发现,台风生成前的低压中心附近降水率和气柱总潜热比随后时次均大,表明降水释放潜热对“云娜”台风的形成起到了非常重要的作用;在台风形成后,降水率和气柱总潜热自台风云墙向外减小;随着台风的成熟,降水率和气柱总潜热沿台风径向分布趋于稳定。潜热廓线分析表明,深厚降水云潜热释放在对流层中上部(3 km以上),最大潜热高度约4.5 km。对降水云和非降水云的冰、水含量平均垂直廓线分析表明,深厚和中等厚度的降水云中水粒子含量具有相似的平均廓线,最大值(约0.03 g/m3)位于4—5 km高度,降水低云中的水粒子含量最大值(约0.07 g/m3)位于4 km高度;对于非降水云,3种不同高度的潜热廓线、水和冰粒子含量廓线相似,反映了TRMM反演算法对这些参数的反演仍存在缺陷。  相似文献   

5.
高洋  方翔 《气象》2018,44(5):597-611
基于2012—2014年CloudSat卫星数据,按照热带气旋强度分类的6个等级以及沿台风中心的径向距离,分析西太平洋台风云系的垂直结构及其微物理特征。研究表明:(1)不同强度的台风云系中均是单层云占主导,多层云中双层云出现比例最高;随着台风强度的增强,距离台风中心250km之内,单层云分布位置更加集中且垂直厚度较厚,而450km之外的单层云一直集中在7~15km,厚度较薄;随着台风强度的增强,距离台风中心250km之内的双层云中的底层云和顶层云均增厚且分布位置更加趋于集中,云间距变窄,而450km之外顶层云和底层云较薄,云间距一直较大。(2)台风云系中,深对流云、高层云、卷云与其他云类型相比,分布的垂直范围较广,出现频率较高,分布的位置会随着台风强度变化和沿台风中心径向距离的增加有明显的变化。(3)随着台风强度的增强,近台风中心5km以上的回波有明显增强,除此高值区外,发展较为成熟的台风,距台风中心450km之外也会出现多个明显的柱状回波高值区。(4)近台风中心液水含量的值和冰水含量的值随强度变化均有明显增加,但外围云系中也有分散的冰水含量高值中心但分布高度相对较低,在10km附近;液水粒子数浓度的高值区域与液水含量的高值区非常对应,而冰水含量的高值区位于冰粒子数浓度的高值区下方,表明小的冰粒子被较强的对流活动带到了高处,而大的冰粒子集中在云系较低处。  相似文献   

6.
利用2007年1月—2010年12月的Cloud Sat-CALIPSO卫星资料,对中国东部及其周边海域(20°—35°N,103°—137°E)夏季(7—8月)深对流云的云水路径、云水含量、粒子有效半径以及粒子数浓度等微物理变量进行了统计分析,并研究了上述微物理变量的概率密度分布以及垂直变化。结果表明:中国东部夏季深对流云液态水路径可以达到1 000 g/m~2,海上液态水路径逐渐减小到600 g/m~2左右,在海洋上深对流云的冰水路径约为1 600 g/m~2,而在中国东部冰水路径大约为1 200 g/m~2;夏季深对流云的液态水含量在47—104 mg/cm3范围内分布概率最大,分布高度在5 km左右达到极大值,冰水含量的分布概率单调递减,在7—11 km高度的值大于200 mg/cm~3;液态水粒子的有效半径在8—13μm的分布概率最大,其有效半径随着高度的增大而逐渐增大,冰粒子有效半径在108μm处分布概率达到最大,最大值出现在5.8 km高度处且值为108μm;液态水粒子数浓度在55—65个/cm~3范围内分布概率最大,数浓度极大值出现的高度最大值为4.6 km,冰粒子数浓度小于297个/L,在5 km高度以上随着高度增加而逐渐增大,到12.3 km高度处达到最大。  相似文献   

7.
利用多种卫星研究台风“艾云尼”宏微观结构特征   总被引:12,自引:2,他引:10       下载免费PDF全文
赵姝慧  周毓荃 《高原气象》2010,29(5):1254-1260
利用FY-2C静止卫星、TRMM卫星和Cloudsat卫星分析了台风"艾云尼"的发展演变过程以及台风眼区、外围雨带降水和云的宏、微观结构特征。结果表明,台风发展的不同阶段、不同位置及台风降水的垂直廓线具有不同特征,台风降水云系的5 km高度存在不连续的亮带结构并且亮带以上云系发展较为旺盛,台风云系中的冰水含量和冰粒子数浓度等微观物理参量分布特征对分析台风降水具有一定的帮助。多个卫星的共同观测可以为深入研究台风内部结构、发展演变及降水提供重要的观测实事。  相似文献   

8.
利用CloudSat卫星资料分析云微物理和光学性质的分布特征   总被引:3,自引:0,他引:3  
利用2007年1月2010年12月高垂直分辨率CloudSat卫星的2B数据产品,对云微物理特征量(包括云中液态水/冰水含量、液态水/冰水路径、云滴有效半径等)以及云光学参数(云光学厚度等)的全球分布和季节变化进行了统计分析,并研究了云微物理性质对光学性质的影响。结果表明,冰水路径分布在北美南部、南美大陆、非洲大陆、澳大利亚和南亚的陆地上空,以及太平洋、大西洋和印度洋的洋面上空,高值区最大值达600 g·m-2以上;垂直方向上,高值区位于赤道地区8 km附近以及中纬度地区4~8 km高度上。液态水路径在300 g·m-2以上的高值区主要位于太平洋、印度洋和大西洋的中低纬度海域上空,垂直上液态水含量随高度递减。冰云有效半径在高纬度地区近地面层达200μm以上,在赤道附近4~8 km上有1个高值区,南北半球中纬度地区2~4 km上有2个高值区,最大值均达到80μm以上。在1 km以下的边界层水云有效半径值较大,达到12μm以上。总云光学厚度在全球大部分地区40,高值区普遍位于中高纬度的广阔地区和低纬度靠近大陆的洋面上空;垂直方向上,云光学厚度的高值集中在2 km以下的边界层。云光学厚度的分布受云量、云水含量和云滴有效半径的影响,云量大的地区基本为云光学厚度的大值区。  相似文献   

9.
利用GPM卫星探测两个时次的资料,以1808号超强台风"玛利亚"为研究对象,分析了台风降水率、降水类型及台风高度水平分布,降水率垂直廓线变化特征,以及降水率三维结构分布特征。得出以下主要结论:两个时刻"玛利亚"均处在超强台风级,A时刻台风眼区为深厚对流区,B时刻眼区对流有所减弱,但是有强螺旋雨带出现。A、B时刻的降水率最大值与风暴顶高度并非一一对应,还与降水云系中微物理过程有关。GMI低频18.7 GHz探测的水粒子含量的大值区与强降水率对应较好,高频183.31±3 GHz探测的冰粒子信号与风暴顶高度分布一致。不同降水率对应的垂直廓线表明,降水率在5 km高度出现急剧变化,这是由于在该高度上雨滴碰并增长或者蒸发减小。从A时刻到B时刻,云墙区大于10 mm·h~(-1)的云墙半径内缩,B时刻眼壁与螺旋雨带之间存在着弱降水区及无降水区。  相似文献   

10.
基于CloudSat资料的青藏高原地区云微物理特征分析   总被引:1,自引:0,他引:1  
青藏高原云物理特征的认识对高原天气和气候的研究有重要意义。利用2006年6月—2011年4月的CloudSat卫星资料,分析了青藏高原地区云的总云水路径、液态水路径、冰水路径及雷达反射率的分布特征,并对高原与东亚降水云的垂直结构进行对比,得到如下结论:(1) 总云水路径的大值区分布在高原西南坡、东南部及高原中部低值区分布在昆仑山脉、祁连山脉及其以北地区;暖季大于冷季;(2) 高原南部及东部为液水路径大值区,以液相云为主;高原中部、北部及西部为冰水路径大值区,以冰相云为主;(3) 雷达反射率的垂直分布主要介于-27~17 dBz,集中在3~9 km;云粒子群随高度先增大后减小,在4 km高度的大小和浓度最大;暖季云高大于冷季,对流活动旺盛;(4) 高原与东亚降水云的结构不同,季节变化也与东亚有差别。(5) 雷达反射率在近地面层随纬度的增大减小,垂直方向的递减率是暖季小于冷季;(6) 冷季的高原上与周边相比为丰水区,南坡的冰水路径与低层雷达反射率大值区对应,表明南坡阻挡作用促进云中冰粒子的形成。   相似文献   

11.
韩丁  严卫  叶晶  刘会发 《大气科学》2013,37(3):691-704
利用2006~2010年的CloudSat热带气旋过境数据集资料,依据风速大小划分为不同演变阶段,对各阶段内东太平洋台风的云、降水和热力结构进行综合分析。结果表明:雷达反射率在5 km高度上下的分布截然相反,沿径向回波强度和顶高不断减小。各类云沿径向和垂直方向的分布差异较大,而深对流云的垂直尺度和发生概率始终较大。有效粒子半径、分布宽度参数和冰水含量随高度减小而粒子数浓度却增大,沿径向各冰云参数以及降雨率都不断减小。各阶段降雨率总体上夏季大于秋季,沿纬向各季节在不同阶段的分布各异。内核区降雨率近似服从指数分布且对暖的海面温度SST较为敏感,其与雷达反射率的散点分布集中在三个区域内。内核区5~10 km高度存在暖核结构,其下方恰好对应湿心区,而10 km以上相对湿度距平较大值区对应台风顶部的卷云罩。各阶段4.5 km以上为对流性稳定层结而该高度以下的层结特性各异,此外假相当位温沿径向不断减小。  相似文献   

12.
利用2007-2010年和2013-2014年Cloud Sat卫星资料,分析了中国11个地理区域的深对流云发生率、冰/液态水路径、冰/液态水含量等分布特征及其季节变化。结果显示,深对流云发生率整体呈现从东南到西北递减的趋势,高值区主要集中在西北地区东南部、西藏东南部、西南地区东部和南部、黄淮西部和南部、江汉、江淮、江南和华南等地,就各个地区不同季节而言,江南地区夏季的值最大,达到10.34%。在垂直高度上,深对流云发生率分布在18 km以下,最大值为11.31%,出现在江南夏季4.08~4.56 km高度上。深对流云中冰水路径最大值出现在华南夏季,液态水路径最大值出现在黄淮秋季,西藏地区的深对流云中冰水路径的比例明显高于液态水路径。冰水含量在垂直高度上存在两个高值区,分别位于6~8 km、14~18 km,最大值发生在江南夏季19.44 km左右高度上,达到1 018.87 mg·m~(-3),季节差异较大的高度位于14~18 km。液态水含量最大值发生在江淮冬季,达到411.50 mg·m~(-3),高度在9.36 km左右,垂直高度上最大值在2~6 km上均有出现。该结果可以更好地揭示深对流云的气候特征,并为人工影响天气以及数值模式中对深对流云物理量的模拟提供一定的参考依据。  相似文献   

13.
利用1998—2013年热带测雨卫星(TRMM)3A12资料,对南海及其周边地区降水、云和潜热的三维特征及其变化进行了对比研究,把南海及其周边地区分为四个区域:华南地区、中南半岛、马来群岛、南海。结果表明:(1)地面降水率EOF分析的第一、二模态方差贡献率分别为57.16%和8.72%,第一模态向量场均为正值,降水呈现南多北少的分布特征;第二模态向量场体现了降水变化南北反相的特征,马来群岛降水变化与其他三个区域反相。从两个模态时间系数序列看出,1998—2005年整个区域降水总体减少,区域降水北部增多南部减少;2005—2013年整个区域降水总体增多,区域降水南部增多北部减少。(2)南海及其周边地区降水夏秋季多,春冬季少,降水中心春夏季北移,秋冬季南撤,其中马来群岛夏季降水最少,冬季最多;其它三个区域都是夏季降水最多,华南和中南半岛冬季最少,南海春季最少。(3)赤道附近对流降水为主,23 °N以北区域层云降水为主,5~23 °N之间区域两种类型降水比例随季节变化,其中陆地降水比例随季节变化明显,特别是华南地区陆地夏季对流降水比例大于50%,冬季层云降水比例大于80%;海洋对流降水所占比例普遍大于50%,随季节变化小。(4)云冰、云水含量水平分布大值区与降水大值区相对应;二者随高度先增加后减少,云冰在13 km高度达到最大值,云水在2.5 km高度达到最大。春冬季,马来群岛云冰含量最大;夏秋季,南海云冰含量最大。云水含量在四个季节都以南海最大。(5)潜热加热率水平分布大值区与降水大值区相对应;随高度呈双峰分布,峰值分别出现在1~2 km高度和4 km高度处,春冬季马来群岛潜热加热率最大。   相似文献   

14.
东亚地区云微物理量分布特征的CloudSat卫星观测研究   总被引:6,自引:3,他引:3  
本文利用2007~2010年整四年最新可利用的CloudSat卫星资料, 对东亚地区(15°~60°N, 70°~150°E)云的微物理量包括冰/液态水含量、冰/液态水路径、云滴数浓度和有效半径等的分布特征和季节变化进行了分析。本文将整个东亚地区划分为北方、南方、西北、青藏高原地区和东部海域五个子区域进行研究, 结果显示:东亚地区冰水路径值的范围基本在700 g m-2以下, 高值区分布在北纬40度以南区域, 在南方地区夏季的平均值最大, 为394.3 g m-2, 而在西北地区冬季的平均值最小, 为78.5 g m-2;而液态水路径的范围基本在600 g m-2以下, 冬季在东部海域的值最大, 达到300.8 g m-2, 夏季最大值为281.5 g m-2, 分布在南方地区上空。冰水含量的最高值为170 mg m-3, 发生在8 km附近, 南方地区夏季的值达到最大, 青藏高原地区的季节差异最大;而液态水含量在东亚地区的范围小于360 mg m-3, 垂直廓线从10 km向下基本呈现逐渐增大的趋势, 峰值位于1~2 km高度上。冰云云滴数浓度在东亚地区的范围在150 L-1以下, 水云云滴数浓度的值小于80 cm-3, 垂直廓线的峰值均在夏季最大。冰云有效半径在东亚地区的最大值为90 μm, 发生在5 km左右;水云有效半径在东亚地区的值分布在10 km以下, 最大值为10~12 μm, 基本位于1~2 km高度上。从概率分布函数来看, 东亚地区冰/水云云滴数浓度的分布呈现明显的双峰型, 其他量基本为单峰型。本文的结果可以为全球和区域气候模式在东亚地区对以上云微物理量的模拟提供一定的观测参考依据。  相似文献   

15.
台风螺旋雨带云结构和降水形成机制研究   总被引:1,自引:1,他引:0       下载免费PDF全文
杨文霞 《气象》2013,39(2):194-202
应用数值模式结果,选择台风登陆后两个不同时次螺旋雨带中两个强降水中心,对台风螺旋雨带的云结构和降水形成机制进行诊断分析.结果发现螺旋雨带云结构和降水形成机制有如下特点:在9~13 km高空范围内冰晶的非均质核化非常活跃,冰晶转化率高于台风眼壁暴雨数倍,但是冰晶通过贝吉龙过程生长为雪、雪通过凝华增长生长为霰的过程相对台风眼壁很弱,螺旋雨带雨水形成微物理机制以霰粒子融化成雨水(pgmlt)为主,冰相粒子转化率大值区位于垂直上升气流大值区,8 km高度霰收集雪(dgacs)干增长是最主要的冰相粒子生长过程,与北方层状云比较,螺旋雨带暴雨冷云中的凝华过程和撞冻过程非常活跃.螺旋雨带云水凝结过程呈双峰型,位于7~8 km高度冷云区的云水凝结峰值较大,暖云区0.5~1.5 km高度云水凝结峰值次之.  相似文献   

16.
基于PR和VIRS融合资料的东亚台风和非台风降水结构分析   总被引:1,自引:0,他引:1  
借助JAXA/EORC热带台风数据集资料,实现了台风区和非台风区的分离,在此基础上,利用热带测雨卫星搭载的测雨雷达和可见光/红外扫描仪的融合观测资料,对1998~2007年东亚雨季台风及非台风降水的气候特征和降水云红外信号特征进行了分析。结果表明:1)东亚台风降水强度谱较非台风降水谱更宽,特别是对流降水主要分布在5~20 mm/h之间;强降水更多,主要分布在东亚洋面。2)雨季东亚降水的主要形式是非台风层云降水,但台风降水对局地降水量的贡献也不容忽视,例如台湾以东附近洋面可达20%。3)台风降水云亮温海陆分布差异显著;其雨顶高度在4~9 km(层云)和4.5~12.5 km(对流)之间均有分布,较非台风降水雨顶高度谱更宽。4)不同等级的台风在降水强度、覆盖区域和云顶10.8μm亮温分布上差异大。  相似文献   

17.
采用CloudSat卫星资料2B-CLDCLASS及2B-CWC-RVOD数据集和Aqua卫星资料的CERES Aqua MODIS Edition 3A数据集,针对2010年12月2-4日北疆地区一次暴雪过程分析了云的类型分布、冰粒子等效半径、低层云等效高度等宏微观物理属性的垂直分布及空间分布情况。结果表明,此次暴雪过程中,云层分布在12km以下,云中冰粒子等效半径和冰水含量均随云层高度增加而减少,冰粒子数浓度在垂直高度上呈单峰分布,高值分布在云层中部5.5km处。北疆地区暴雪前和暴雪后基本为低层云云量小于40%的低值区,暴雪时则为大于60%的高值区,云等效高度暴雪前和暴雪后大多为小于6km值域区,暴雪时为大于6km的高值区。  相似文献   

18.
王雨  傅云飞  刘国胜 《气象学报》2006,64(4):443-452
根据TRMMTMI的探测特点,结合微波辐射传输模式,研究了针对副热带地区非降水云液态水路径的TMI反演方案,并对反演方案进行了间接检验。首先,利用微波辐射传输模式进行模拟研究,分析了在副热带地区,相应TMI各通道的微波亮温对非降水云液态水路径的响应特点,结果表明37.0GHz和85.5GHz的水平极化通道探测结果对非降水云液态水路径的响应更为敏感;随后,利用模式分析了TMI各单一通道反演的非降水云液态水路径与理论值的差异,并在此基础上给出了利用37.0GHz和85.5GHz的水平极化通道亮温联合反演非降水云液态水路径的方案;最后,利用TMI的探测结果,采用该反演方案对无云区、非降水云区以及台风降水云区进行了反演计算。结果表明,无云区的液态水路径在-1—1g/m2之间,且平均值为10-5量级;非降水云的液态水路径变化范围在0—500g/m2之间,且其水平分布与TRMM的可见光通道0.64μm探测的云分布一致;在台风降水云个例中,随着台风的成熟,高液态水路径的面积比初始阶段增多,且当地表降水率小于5mm/h时,云中液态水路径随地表降水率的增大而逐渐增大。  相似文献   

19.
登陆台风“罗莎”中云物理特征的数值模拟研究   总被引:3,自引:0,他引:3  
选取2007年16号超强台风“罗莎”为个例,利用耦合了双参数混合相云降水物理方案的 GRAPES中尺度模式对其进行模拟,并结合实况雨量、雷达及卫星资料分析了本次台风暴雨的结构及云微物理特征。结果表明,低空急流和不稳定的温度层结为本次降水过程提供了有利的天气条件。强降水中心主要出现在台风云系的北部和东部,在模拟时段内6小时累积降水最大值超过100 mm。积分固态水含量与液态水相当,说明冰相粒子在形成降水的过程中起重要作用。从CloudSat卫星探测结果来看,强对流发生在台风眼周围的云墙中。根据模拟结果分析,台风东北部的强降水属于对流云降水,最强上升气流出现在0 ℃等温线之下的暖区;西南部的降水强度比较均匀,强上升气流出现在高层冷云中,有利于冰粒子的形成和生长。   相似文献   

20.
基于风廓线雷达的广东登陆台风边界层高度特征研究   总被引:3,自引:1,他引:2  
廖菲  邓华  李旭 《大气科学》2017,41(5):949-959
针对8个登陆广东省的热带气旋,利用经过数据质量控制的风廓线雷达连续、高时空分辨率的风场观测数据,对热带气旋边界层特征进行了分析。研究结果表明:热带气旋边界层中切向风速大值区垂直范围越大、风速越强、持续时间越久,则热带气旋强度越大、登陆后强度维持时间越久。眼区外入流层厚度越大,入流层气流越强,热带气旋登陆后强度维持时间则越久。风廓线雷达信噪比垂直梯度对大气湍流信息有一定的指示作用,对于入流层高度在2000 m以下的热带气旋,其入流层顶所在高度与信噪比梯度最大值所在高度相近,对于入流层较为深厚的热带气旋,用信噪比垂直梯度确定的边界层高度虽接近入流层顶高,但仍有一定差距。不同特点的热带气旋其边界层高度并不相同,对于登陆后强度迅速减弱的热带气旋边界层高度在500~1000 m;登陆后强度持续时间短的热带气旋,其边界层高度约1000~2000 m;登陆后强度持续时间长的热带气旋,其边界层高度在2000 m之上,最高可达5000~7000 m。这些结果加深了对登陆台风边界层高度演变特征的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号