首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Climate forcing by carbonaceous and sulfate aerosols   总被引:3,自引:0,他引:3  
 An atmospheric general circulation model is coupled to an atmospheric chemistry model to calculate the radiative forcing by anthropogenic sulfate and carbonaceous aerosols. The latter aerosols result from biomass burning as well as fossil fuel burning. The black carbon associated with carbonaceous aerosols is absorbant and can decrease the amount of reflected radiation at the top-of-the-atmosphere. In contrast, sulfate aerosols are reflectant and the amount of reflected radiation depends nonlinearly on the relative humidity. We examine the importance of treating the range of optical properties associated with sulfate aerosol at high relative humidities and find that the direct forcing by anthropogenic sulfate aerosols can decrease from −0.81 W m-2 to −0.55 Wm-2 if grid box average relative humidity is not allowed to increase above 90%. The climate forcing associated with fossil fuel emissions of carbonaceous aerosols is calculated to range from +0.16 to +0.20 Wm-2, depending on how much organic carbon is associated with the black carbon from fossil fuel burning. The direct forcing of carbonaceous aerosols associated with biomass burning is calculated to range from −0.23 to −0.16 Wm-2. The pattern of forcing by carbonaceous aerosols depends on both the surface albedo and the presence of clouds. Multiple scattering associated with clouds and high surface albedos can change the forcing from negative to positive. Received: 29 September 1997 / Accepted: 10 June 1998  相似文献   

2.
刘颖  朱君 《气象科技》2022,50(6):878-884
利用青藏高原拉萨(Lhasa)和珠峰(QOMS_CAS)站点地基CE 318太阳光度计观测数据,研究了2012年4月2日至4月5日一次生物质燃烧输送对青藏高原气溶胶光学和辐射特性的影响;并结合卫星遥感产品以及后向轨迹模式分析了本次生物质燃烧输送的可能来源。结果表明:本次气溶胶污染期间Lhasa和QOMS_CAS站点的主要气溶胶类型变为生物质燃烧气溶胶,气溶胶粒子的消光性增大(气溶胶光学厚度(AOD)增大,Lhasa和QOMS_CAS站点AOD最大值分别为0.4和0.29),尺度减小(消光波长指数(EAE)>1.5),吸收性增大(吸收波长指数(AAE)>1.3),细模态粒子体积浓度增大,而细模态粒子峰值半径减小。气溶胶辐射强迫表明此次输送过程使得Lhasa和QOMS_CAS站点的气溶胶对大气顶和地表的降温作用增强,对大气的增温作用也增强。生物质燃烧输送的可能来源为南亚的印度东北部,尼泊尔与不丹地区。  相似文献   

3.
Aerosol samples (205) were collected from January 2005 to November 2006 at a coastal site at Keelung City (Taiwan), on the southern East China Sea. The atmospheric concentrations of major ions indicated that the area was dominated by different air masses at different times of the year: continental Asia from January to May and November to December; air masses from Indonesia and surrounding islands (south-eastern region) dominated during early-summer (July 2005 and June 2006), and air masses directly from the adjacent ocean dominated during late-summer (July to August 2006) and early-autumn (September to October 2005). The atmospheric concentrations of water soluble organic nitrogen (WSON) corresponded to the different sources and weather conditions. The results of a factor analysis of combined major ions, water soluble inorganic nitrogen (WSIN) and WSON indicated that a fossil fuel combustion source and biomass burning were the two major controlling factors during the sampling period. We discuss the correlations between WSON, WSIN and major anthropogenic ions in relation to the different formation mechanisms for the various sources. We propose a mechanism whereby biomass burning is the major input of aerosols derived from mainland China. Fossil fuel combustion was found to be important during periods when aerosols were derived from the south-eastern area. Our data indicate that WSON was predominantly associated with aerosols derived from biomass burning when the origin of the air mass was mainland China.  相似文献   

4.
为了研究大气污染对太行山中部地区地表风的影响,我们对阳泉、榆社(高山站),石家庄、邢台(平原站)4个站点1966~2005年间的能见度、近地面温度、近地面风速数据进行了统计计算与趋势分析。结果显示:在平原站能见度相对山坡站下降更加明显的背景下,平原站的近地面温度、近地面风速、850hPa风速都呈下降趋势;而山坡站的近地面温度、近地面风速呈上升趋势。分析表明:(1)由于气溶胶的辐射效应与冷却效应,抑制了垂直通量的上下传输,致使平原站下午的近地面气温呈下降趋势,平原站和高山站的地表风速呈相反的变化趋势。(2)平原站850hPa (与高山站高度相近)风速呈现下降趋势,印证了高山站的近地面风速增加是气溶胶的辐射效应减弱了垂直能量交换造成的。   相似文献   

5.
近年来华东地区大气气溶胶的时空特征   总被引:4,自引:1,他引:3  
利用2000年2月—2008年12月的AERONET(AErosol RObotic NETwork)地基观测数据对MODIS/TERRA Collection 005气溶胶光学厚度(aerosol optical thickness;AOT)在华东区域的适用性进行了验证,并利用验证后的MODIS气溶胶产品对华东区域气溶胶光学厚度和尺度分布特征进行了分析。结果表明,(1)通过验证比较,MODIS的AOT在华东区域与AERONET站陆基观测到的AOT具有非常好的一致性,满足美国NASA的设计要求。(2)华东区域的气溶胶光学厚度存在明显的时空分布特征。时间上,在春季和夏季达到最大,而在秋季和冬季最小,表现出明显的季节变化规律。空间上,气溶胶光学厚度受地形影响明显。其高值区主要分布在平原地区,而低值区主要在海拔较高的山区。(3)该区域的气溶胶尺度分布也存在显著的变化特征。在冬、春由于沙尘输送的影响,整个华东区域气溶胶粒子的尺度都比较大,主要以自然生成的沙尘粒子为主。而在夏、秋季由于夏季风和降水的影响,气溶胶粒子的尺度都比较小,以工业排放的人为气溶胶粒子为主。  相似文献   

6.
Emissions of Polycyclic aromatic hydrocarbons by savanna fires   总被引:2,自引:0,他引:2  
Although Polycyclic aromatic hydrocarbons (PAH) are known as anthropogenic compounds arising from the combustion or the pyrolysis of fossil fuels, they may be also emitted by the combustion of vegetation. A field study was carried out in January 1991 at Lamto (Ivory Coast) as part of the FOS DECAFE experiment (Fire Of Savanna). Some ground samplings were devoted to the qualitative and quantitative characterization of atmospheric emissions by savanna fires during prescribed burns and under background conditions. Specific collections for gaseous and particulate PAHs have shown that the African practice of burning the savanna biomass during the winter months is an important source of PAHs. These compounds are emitted mainly in gaseous form but a significant fraction, essentially heavy PAHs, is associated with fine carbonaceous particles and can therefore represent a hazard for human health, since some of these compounds are mutagenic and carcinogenic. Twelve compounds were identified during the fire episodes and in the atmospheric background. The total concentration in the fires is of the order of 10 ng m–3 for the gas phase and from 0.1 to 1 ng m–3 in the aerosols. In the atmospheric background the mean concentrations are regular, 0.15 ng m–3 and 2 pg m–3, respectively. These concentrations are comparable with what is observed in European rural zones. The particulate emissions of PAHs by the savanna fires are distinguished by the abundance of some compounds which can be considered as tracers, although they are also slightly emitted by fossil fuel sources. These compounds are essentially pyrene, chrysene and coronene. In the gas phase, although no individual PAH may be considered as specific of the biomass combustion emissions, the relative abundances of the main PAHs are characteristic of the biomass burning. The concentrations of pyrene and fluorene are always predominant; these compounds could be considered as characteristic emission products of smoldering and flaming episodes, respectively. In the background the PAH composition shows that in a tropical region the air consists of a mixture coming from the various sources, but the biomass combustion is by far the most important source.The fluxes of total PAH emitted by savanna biomass burning in Africa were estimated to be of the order of 17 and 600 ton yr–1, respectively, for the particulate PAHs and the gaseous PAHs, respectively.  相似文献   

7.
This study provides estimates of greenhouse gas emissions from the major anthropogenic sources for 142 countries. The data compilation is comprehensive in approach, including emissions from CO, CH4, and N2O, and ten halocarbons, in addition to CO2. The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature.  相似文献   

8.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

9.
The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002–2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM10, PM2.5 and PM1 levels at MSY during 2002–2007 were 16, 14 and 11 µg/m3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM2.5 and PM10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.  相似文献   

10.
During the ANT VII/1 cruise of the RV Polarstern from Bremerhaven (Germany) to Rio Grande do Sul (Brazil), atmospheric particulate matter was collected by bulk filtration with a time step of 36 hours. Elemental analyses were performed in order to determine atmospheric aerosol concentrations of Al, Si, P, S, K, Ca, Ti, Mn, Fe, and Zn over the North Sea, the Channel, and the North and South Atlantic. The slight and continuous moving in latitude, associated with the large variability in concentration levels and chemical composition, allow us to point out the relative influence of the major sources of particulate matter: desert soil-dust in the tropical North Atlantic, anthropogenic emissions in the North Sea and the Channel, and biomass burning and continental biogenic activity in the tropical South Atlantic.  相似文献   

11.
Measurements of  Δ14C  in atmospheric CO2 are an effective method of separating CO2 additions from fossil fuel and biospheric sources or sinks of CO2. We illustrate this technique with vertical profiles of CO2 and  Δ14C  analysed in whole air flask samples collected above Colorado, USA in May and July 2004. Comparison of lower tropospheric composition to cleaner air at higher altitudes (>5 km) revealed considerable additions from respiration in the morning in both urban and rural locations. Afternoon concentrations were mainly governed by fossil fuel emissions and boundary layer depth, also showing net biospheric CO2 uptake in some cases. We estimate local industrial CO2:CO emission ratios using in situ measurements of CO concentration. Ratios are found to vary by 100% and average 57 mole CO2:1 mole CO, higher than expected from emissions inventories. Uncertainty in CO2 from different sources was ±1.1 to ±4.1 ppm for addition or uptake of −4.6 to 55.8 ppm, limited by  Δ14C  measurement precision and uncertainty in background  Δ14C  and CO2 levels.  相似文献   

12.
This study examines and evaluates simulated aerosol optical depth (AOD) and fine-mode AOD (fAOD) from the ACCMIP and CMIP5 global model archives. Satellite data nudged to AERONET data are used to construct reliable global observations of AOD and fAOD for validating the simulations. The difference in simulated global average AOD among models is of the order of a factor of 2, and the difference is even larger (~factor of 3) for fAOD. Compared to the observations, the models tend to underestimate AOD and fAOD significantly over eastern China. Another important discrepancy is that the models show larger fAOD over the Indus-Ganga Plain in summer than in winter, whereas the observations display an opposite feature. The models also overestimate the fAOD over the biomass burning regions of central Africa in DJF and underestimate the fAOD over the biomass burning regions of southern Africa in JJA. To evaluate the effect of the discrepancy between modeled and observed fAOD on aerosol direct radiative forcing, an offline radiation model is utilized. Comparing the model-fAODderived fine-mode forcing with the fine-mode forcing derived from the fAOD observation, the models tend to give too large (negative) value. This result implies that the calculated anthropogenic aerosol forcing in ACCMIP and CMIP5 models has a negative bias.  相似文献   

13.
We use a coupled climate–carbon cycle model of intermediate complexity to investigate scenarios of stratospheric sulfur injections as a measure to compensate for CO2-induced global warming. The baseline scenario includes the burning of 5,000 GtC of fossil fuels. A full compensation of CO2-induced warming requires a load of about 13 MtS in the stratosphere at the peak of atmospheric CO2 concentration. Keeping global warming below 2°C reduces this load to 9 MtS. Compensation of CO2 forcing by stratospheric aerosols leads to a global reduction in precipitation, warmer winters in the high northern latitudes and cooler summers over northern hemisphere landmasses. The average surface ocean pH decreases by 0.7, reducing the calcifying ability of marine organisms. Because of the millennial persistence of the fossil fuel CO2 in the atmosphere, high levels of stratospheric aerosol loading would have to continue for thousands of years until CO2 was removed from the atmosphere. A termination of stratospheric aerosol loading results in abrupt global warming of up to 5°C within several decades, a vulnerability of the Earth system to technological failure.  相似文献   

14.
There are many indicators that human activity may change climate conditions all around the globe through emissions of greenhouse gases. In addition, aerosol particles are emitted from various natural and anthropogenic sources. One important source of aerosols arises from biomass burning, particularly in low latitudes where shifting cultivation and land degradation lead to enhanced aerosol burden. In this study the counteracting effects of greenhouse gases and aerosols on African climate are compared using climate model experiments with fully interactive aerosols from different sources. The consideration of aerosol emissions induces a remarkable decrease in short-wave solar irradiation near the surface, especially in winter and autumn in tropical West Africa and the Congo Basin where biomass burning is mainly prevailing. This directly leads to a modification of the surface energy budget with reduced sensible heat fluxes. As a consequence, temperature decreases, compensating the strong warming signal due to enhanced trace gas concentrations. While precipitation in tropical Africa is less sensitive to the greenhouse warming, it tends to decrease, if the effect of aerosols from biomass burning is taken into account. This is partly due to the local impact of enhanced aerosol burden and partly to modifications of the large-scale monsoon circulation in the lower troposphere, usually lagging behind the season with maximum aerosol emissions. In the model equilibrium experiments, the greenhouse gas impact on temperature stands out from internal variability at various time scales from daily to decadaland the same holds for precipitation under the additional aerosol forcing. Greenhouse gases and aerosols exhibit an opposite effect on daily temperature extremes, resulting in an compensation of the individual responses under the combined forcing. In terms of precipitation, daily extreme events tend to be reduced under aerosol forcing, particularly over the tropical Atlantic and the Congo basin. These results suggest that the simulation of the multiple aerosol effects from anthropogenic sources represents an important factor in tropical climate change, hence, requiring more attention in climate modelling attempts.  相似文献   

15.
To access the relative contribution of anthropogenic and biogenic sulfur sources to the sulfur budget in the Eastern Mediterranean, an area characterized by very high nss-     levels, measurements of both wet and dry deposition of sulfur were performed at a remote area on the island of Crete (Finokalia) during a 3-yr period (1996–1999). The estimation of dry deposition is based on both gaseous sulfur dioxide (SO2) and particulate phase non-sea-salt sulfate (nss-     ) and methane sulfonate (MSA) measurements. During the dry period, deposition of SO2 from long-range transport is the main component of anthropogenic sulfur deposition in the area. The results of the wet and dry deposition obtained at Finokalia have been compared with DMS emission from seawater obtained during two yearly surveys (1997–1998) in the Cretan Sea. Our results indicate that the contribution from biogenic sources to the sulfur budget in the Eastern Mediterranean, although negligible during winter, can account for up to 26% during summer.  相似文献   

16.
Africa is one of the sources of biomass burning emissions. It is estimated that about 6 million tons of fuel per day is consumed in the southern hemisphere. Biomass burning has an important contribution on aerosol particle concentrations in the atmosphere. Efforts have been made to conduct research in Gaborone to monitor the concentration of atmospheric aerosol particles. These studies were mainly confined to measurement of concentration of aerosol particles and establishing a relation with determinants such as carbon dioxide concentration, biomass burning, and precipitation among others. However, very little seems to have been done in relating the empirical data to levels of aerosol concentrations through a mathematical model. In this paper an objective criterion of classifying levels of aerosol concentrations in terms of their severity is provided. A mathematical model for severity levels is built. Furthermore, two indices, namely, an index of dispersion when applied to the observed annual data indicated that intensity of atmospheric aerosol are on increase in the city of Gaborone, Botswana, and an index of drift which establishes that aerosol severity states showed larger drift during the year 2006–2007 than in the year 2007–2008.  相似文献   

17.
Particulate content of savanna fire emissions   总被引:9,自引:0,他引:9  
As part of the FOS-DECAFE experiment at Lamto (Ivory Coast) in January 1991, various aerosol samples were collected at ground level near prescribed fires or under local background conditions, to characterize the emissions of particulate matter from the burning of savanna vegetation. This paper deals with total aerosol (TPM) and carbon measurements. Detailed trace element and polycyclic hydrocarbon data are discussed in other papers presented in this issue.Near the fire plumes, the aerosols from biomass burning are primarily of a carbonaceous nature (C%70% of the aerosol mass) and consist predominantly of submicron particles (more than 90% in mass.) They are characterized by their organic nature (black to total carbon ratio Cb/Ct in the range 3–20%) and their high potassium content (K/Cb0.6). These aerosols undergo aging during their first minutes in the atmosphere causing slight alterations in their size distribution and chemical composition. However, they remain enriched in potassium (K/Cb=0.21) and pyrene, a polycyclic aromatic hydrocarbon, such that both of these species may be used as tracers of savanna burning aerosols. We show that during this period of the year, the background atmosphere experiences severe pollution from both terrigenous sources and regional biomass burning (44% of the aerosol). Daynight variations of the background carbon concentrations suggest that fire ignition and spreading occur primarily during the day. Simultaneous TPM and CO2 real-time measurements point to a temporal and spatial heterogeneity of the burning so that the ratio of the above background concentrations (TPM/CO2) varies from 2 to 400 g/kg C. Smoldering processes are intense sources of particles but particulate emissions may also be important during the rapidly spreading heading fires in connection with the generation of heavy brown smoke. We propose emission factor values (EF) for aerosols from the savanna biomass burning aerosols: EF (TPM)=11.4±4.6 and 69±25 g/kg Cdry plant and EF(Ct)=7.4±3.4 and 56±16 g C/kg Cdry plant for flaming and smoldering processes respectively. In these estimates, the range of uncertainty is mostly due to the intra-fire variability. These values are significantly lower than those reported in the literature for the combustion of other types of vegetation. But due to the large amounts of vegetation biomass being burnt in African savannas, the annual flux of particulate carbon into the atmosphere is estimated to be of the order of 8 Tg C, which rivals particulate carbon emissions from anthropogenic activities in temperate regions.  相似文献   

18.
Diurnal variation in the atmospheric CO2 concentration and the carbon isotopic composition (Δ14C and δ13C) was measured in a forest in an urban area on 9 February 1999. The carbon isotope approach used in the present study differentiated between the quantitative contributions from anthropogenic and biogenic CO2 sources in the urban atmosphere. The anthropogenic (fossil fuel) and biogenic (soil respiration) contributions was estimated, and they ranged from 1 to 16% and from 2 to 8% of the total atmospheric CO2. The diurnal variation of the anthropogenic CO2 was the major cause of the total atmospheric CO2 variation, while the biogenic CO2 remained relatively constant throughout the day. Estimating the contribution of soil respired CO2 provided the mean residence time of soil respired CO2 within the forest atmosphere.  相似文献   

19.
过去60年中国秦岭地区云量变化及原因分析   总被引:1,自引:0,他引:1  
利用近50年秦岭地区高山站及邻近2个地面站的气象资料、季风指数及海温资料,初步分析了云量的变化特征和原因,结果表明:(1)秦岭地区云量变化呈减少趋势,其中华山站(高山)、华县和西安站(平原)夜间的低云量分别为-1.74%·(10a)-1,-1.56%·(10a)-1和-4.23%·(10a)-1,白天的分别为-0.73%·(10a)-1,-1.94%·(10a)-1和-4.62%·(10a)-1;(2)夜间高山站总云量比平原站减少的多(-1%·(10a)-1),白天减少的少(<-0.6%·(10a)-1);(3)高山站和平原站四季的低云量都是减少的,除了平原站夏季总云量是增加的外,其他季节均减少。云量变化的主要原因是:(1)局地气溶胶冷却作用,导致地面接收太阳辐射减少,使局地对流减弱,造成低云量减少;(2)由于西太平洋副热带高压面积增大,使秦岭地区总云量减少。  相似文献   

20.
We investigated size-resolved submicrometre aerosol particle number and volume concentration time series as well as aerosol dynamic parameters derived from Differential Mobility Particle Sizer (DMPS) measurements at five background stations in the Nordic boreal forest area. The stations in question were Aspvreten, Hyytiälä and Utö in southern Finland and Sweden, and Värriö and Pallas in the Finnish Lapland. The objective of our investigation was to identify and quantify annual and interannual variation observable in the time series. We found that the total number and mass concentrations were much lower at the Lapland stations than at the southern stations and that the total particle number was strongly correlated to particle formation event frequency. The annual total number concentration followed the annual distribution of particle formation events at the southern stations but much less clearly at the Lapland stations. The volume concentration was highest during summer, in line with higher condensation growth rates; this is in line with the assumption that a large part of the particle volume is produced by oxidized plant emissions. The decrease of sulphate emissions in Europe was not visible in our data set. Aerosol dynamic parameters such as condensation sink, condensation sink diameter and the power law exponent linking coagulation losses and condensation sink are presented to characterize the submicron Nordic background aerosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号