首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
利用2017-2019年空气质量监测数据,采用HYSPLIT后向轨迹模式、聚类分析、潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),对运城市秋冬季大气PM2.5传输路径、对应重污染的天气形势和潜在源区进行分析。结果表明:(1)运城近地层盛行偏东风时污染频率高,弱的偏东风和西南风时,污染物浓度较大。秋冬季PM2.5后向轨迹西北方向最多达53.53%,偏东方向最少为11.25%,偏西方向和西南方向介于两者之间,分别为16.61%和12.06%。(2)不同轨迹对应天气形势不同,西北和偏西轨迹下,500 hPa高度场上为两槽一脊或偏西气流,700~850 hPa受脊前西北气流影响,地面为高压前底部型或均压场型;西南轨迹下,500 hPa高度场上为偏西气流,700~850 hPa运城处于槽前西南气流,地面气压场为高压前底部(底部)或均压场。(3)运城PM2.5潜在源区主要位于陕西南部、四川东部和新疆东南、甘肃的东南部等地区,说明影响运城秋冬季PM2.5的浓度除了来自汾渭平原西南部的颗粒物区域输送,来自西北方向新疆、甘肃的远距离颗粒物传输也是重要来源。  相似文献   

7.
8.
9.
10.
11.
12.
Estimates of Asian emissions of air pollutants and carbonaceous aerosols and their mid-term projections have been changing significantly in the last years. The remote sensing community has shown that increase in NO x in Central East Asia is much stronger than any of the emission inventories or projections indicated so far. A number of studies reviewing older estimates appeared. Here, we review the key contributions and compare them to the most recent results of the GAINS model application for Asia and to the SRES projections used in the IPPC work. The recent projections indicate that the growth of emissions of SO2 in Asia should slow down significantly towards 2010 or even stabilize at the current level. For NO x , however, further growth is projected although it will be most likely slower that in the last decade, owing to introduction of measures in transport. Emissions of carbonaceous aerosols (black carbon and organic carbon) are expected to decline after 2010, largely due to reduced use of biofuels in residential sector and efficiency improvements. The estimates of these emissions are burdened with significantly larger uncertainties than SO2 and NO x ; even for the year 2000 the differences in estimates between studies are up to a factor of 2.  相似文献   

13.
14.
15.
16.
17.
The recent discovery of an anomalous enrichment in 17O isotope in atmospheric sulfate has opened a new way to investigate the oxidation pathways of sulfur in the atmosphere. From laboratory investigations, it has been suggested that the wet oxidation of sulfur in rain droplets was responsible for the excess 17O. In order to confirm this theory, sulfur and oxygen isotope ratios of different primary sulfates produced during fossil fuel combustion have been investigated and are reported. None of these samples exhibits any anomalous oxygen or sulfur isotopic content, as compared to urban sulfate aerosols. These results, in agreement with the laboratory investigations, reinforce the idea of an aqueous origin for the oxygen-17 anomaly found in tropospheric sulfates.  相似文献   

18.
19.
20.
Measurements of  Δ14C  in atmospheric CO2 are an effective method of separating CO2 additions from fossil fuel and biospheric sources or sinks of CO2. We illustrate this technique with vertical profiles of CO2 and  Δ14C  analysed in whole air flask samples collected above Colorado, USA in May and July 2004. Comparison of lower tropospheric composition to cleaner air at higher altitudes (>5 km) revealed considerable additions from respiration in the morning in both urban and rural locations. Afternoon concentrations were mainly governed by fossil fuel emissions and boundary layer depth, also showing net biospheric CO2 uptake in some cases. We estimate local industrial CO2:CO emission ratios using in situ measurements of CO concentration. Ratios are found to vary by 100% and average 57 mole CO2:1 mole CO, higher than expected from emissions inventories. Uncertainty in CO2 from different sources was ±1.1 to ±4.1 ppm for addition or uptake of −4.6 to 55.8 ppm, limited by  Δ14C  measurement precision and uncertainty in background  Δ14C  and CO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号