首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for the Antarctic region.The fixed station was established in 1989,and conventional radiation observations started much later in 2008.In this study,a random forest (RF) model for estimating DGSR is developed using ground meteorological observation data,and a highprecision,long-term DGSR dataset is constructed.Then,the trend of DGSR from 1990 to 2019 at Zhongshan Station,Antarctica is analyzed.The RF model,which performs better than other models,shows a desirable performance of DGSR hindcast estimation with an R~2 of 0.984,root-mean-square error of 1.377 MJ m~(-2),and mean absolute error of 0.828 MJ m~(-2).The trend of DGSR annual anomalies increases during 1990–2004 and then begins to decrease after 2004.Note that the maximum value of annual anomalies occurs during approximately 2004/05 and is mainly related to the days with precipitation (especially those related to good weather during the polar day period) at this station.In addition to clouds and water vapor,bad weather conditions (such as snowfall,which can result in low visibility and then decreased sunshine duration and solar radiation) are the other major factors affecting solar radiation at this station.The high-precision,longterm estimated DGSR dataset enables further study and understanding of the role of Antarctica in global climate change and the interactions between snow,ice,and atmosphere.  相似文献   

2.
The present study investigates the interdecadal variability of seasonal mean surface solar radiation over Northwest China using station observations from 1961-2003. Spring and summer surface solar radiation over Northwest China was lower in the late 1970s through 1990s than in the 1960s through the mid-1970s, and fall and winter surface solar radiation displayed similar patterns. These results indicate that the decrease in spring and summer surface solar radiation may be associated with increased low-cloud cover over Northwest China. Rainfall anomalies were closely related to the low-cloud cover over Northwest China and with the Northern Hemisphere circumglobal teleconnection in spring, summer, and winter.  相似文献   

3.
This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.  相似文献   

4.
From 1983 to 1984,14 solar radiation observation stations which are located in different climate zoneswere chosen for the simultaneous observation of natural illumination with the hourly observation of insola-tion every day.In this paper,according to the data the light equivalent of total solar radiation (LEOTSR)has been given.A multivariate regression equation is employed to calculate the annual and monthly meanvalues of the LEOTSR at 14 observation stations.The variables of the equation include latitude,elevation,surface mean absolute humidity and sunshine duration.The results show that the relative errors are lessthan 10%.The LEOTSR for 464 observation stations was calculated by means of the multivariate regression equationswhich were obtained by the data of 14 observation stations.The total illumination is given by the LEOTSRmultiplying the total radiation.The climatological values of total illumination for each station are alsocalculated according to its LEOTSR and solar radiation.Finally,the climatological charts of total illuminationin China have been drawn.  相似文献   

5.
The atmosphere protects humans,plants,animals,and microorganisms from damaging doses of ultraviolet-B(UVB) solar radiation(280-320 nm) because it modifies the UVB reaching the Earth’s surface.This modification is a function of the solar radiation’s path length through the atmosphere and the amount of each attenuator along the path length.The path length is determined by solar zenith angle(SZA).The present work explains the dependence of hemispherical transmittance of UVB on SZA.The database used consists of five years of hourly UVB and global solar radiation measurements.From 2001 to 2005,the South Valley University(SVU) meteorological research station(26.20°N,32.75°E) carried out these measurements on a horizontal surface.In addition,the corresponding extraterrestrial UVB(UVBext) and broadband solar radiation(Gext) were estimated.Consequently,the hemispherical transmittance of UVB(KtUVB) and the hemispherical transmittance of global solar radiation(Kt) were estimated.Furthermore,the UVB redaction due to the atmosphere was evaluated.An analysis of the dependence between KtUVB and SZA at different ranges of Kt was performed.A functional dependence between KtUVB and SZA(KtUVB=-a(SZA)+b) for very narrow Kt-ranges(width of ranges was 0.01) was developed.The results are discussed,and the sensitivity of △KtUVB to △SZA for very narrow Kt-ranges was studied.It was found that the sensitivity of △KtUVB to △SZA slightly increases with increased Kt,which means KtUVB is sensitive to SZA as Kt increases.The maximum correlation(R) between KtUVB and SZA was equal to-0.83 for Kt= 0.76.  相似文献   

6.
In situ measured data of broadband solar radiation (Rs) and ultraviolet (Uv) radiation were used to investigate the spa- tiotemporal variation properties of Uv radiation and the ratio of Uv radiation to Rs over the North China Plain (NCP). Based on the analysis, an empirical model for estimating Uv radiation under all weather conditions in this region was developed. The results showed that the annual Uv radiation over the NCP ranges from 0.38-0.52 MJ m^-2 d^-1. The highest value during the study period was recorded at the Changwu site, which is located near the margin of the Loess Plateau, while the lowest value appeared at the station in Beijing. The seasonal variation pattern of the ratio of Uv radiation to Rs is similar to that of Uv radiation; namely, the highest value appears in August and then decreases gradually until the lowest value appears in November. A small increasing trend in the Uv radiation levels and the ratio of Uv radiation to Rs was observed over the NCP. The evaluation results showed that the empirical estimation model can be widely used to estimate Uv radiation under all atmospheric conditions. The relative error between the modeled and measured daily values were within ± 15%.  相似文献   

7.
In this study,the clear sky hourly global and net solar irradiances at the surface determined using SUNFLUX,a simple parameterization scheme,for three stations(Gaize,Naqu,and Lhasa) on the Tibetan Plateau were evaluated against observation data.Our modeled results agree well with observations.The correlation coefficients between modeled and observed values were > 0.99 for all three stations.The relative error of modeled results,in average was < 7%,and the root-mean-square variance was < 27 W m 2.The solar irradiances in the radiation model were slightly overestimated compared with observation data;there were at least two likely causes.First,the radiative effects of aerosols were not included in the radiation model.Second,solar irradiances determined by thermopile pyranometers include a thermal offset error that causes solar radiation to be slightly underestimated.The solar radiation absorbed by the ozone and water vapor was estimated.The results show that monthly mean solar radiation absorbed by the ozone is < 2% of the global solar radiation(< 14 W m 2).Solar radiation absorbed by water vapor is stronger in summer than in winter.The maximum amount of monthly mean solar radiation absorbed by water vapor can be up to 13% of the global solar radiation(95 W m 2).This indicates that water vapor measurements with high precision are very important for precise determination of solar radiation.  相似文献   

8.
Land surface processes take place on the interface between the earth and atmosphere, exerting significant influences on the weather and climate. Correct modeling of these processes is important to numerical weather forecast and climate prediction. In order to obtain a more thorough understanding of the land surface processes over the Gobi landscape, we evaluated the performance of the Common Land Model(Co LM) at Dunhuang station in Gansu Province of China to determine whether the model formulation, driven by observational data, is capable of simulating surface fluxes over the underlying desert surface. In comparison with the enhanced observation data collected at Dunhuang station over the period 22–28 August 2008, the results showed that the surface albedo simulated by Co LM was larger than that in the observation, and the simulated surface temperature was lower than the observed. After the measured values were used to correct the surface albedo, the solar radiation absorbed by the ground surface was more consistent with the measurements. A new empirical relationship of the surface thermal exchange coefficient rah was used to modify the thermal aerodynamic impedance. The simulated soil surface temperature became significantly closer to the observed value, and the simulated surface sensible heat as well as net radiative fluxes were also improved.  相似文献   

9.
The global mean temperatures of the atmosphere and the surface of various planets of the solar system are deter-mined by taking the system as in radiative equilibrium,with the atmosphere taken as transparent to solar radiation butwith an albedo α,and composed of N layers each of which absorbs all infrared radiation that falls on it,and a top layerof partial absorptivity a,while the surface is taken as black.It is found that,for the earth's atmosphere with α=0.33,N=0,a=0.83,it gives the current observed mean surface temperature T_s=15℃ and the effective mean radiative temper-ature of the atmosphere T_a=242.6K.On the other hand;the atmosphere of Venus is characterized by α=0.70 andN=70,which yields a surface temperature of about 700K.It is also found that surface evaporation and absorption of solar radiation by the atmosphere tend to lower the sur-face temperature.  相似文献   

10.
The long-term trends of total surface solar radiation(SSR),surface diffuse radiation,and surface air temperature were analyzed in this study based on updated 48-yr data from 55 observational stations in China,and then the correlation between SSR and the diurnal temperature range(DTR) was studied.The effect of total solar radiation on surface air temperature in China was investigated on the basis of the above analyses.A strong correlation between SSR and DTR was found for the period 1961-2008 in China.The highest correlation and steepest regression line slope occurred in winter,indicating that the solar radiation effect on DTR was the largest in this season.Clouds and water vapor have strong influences on both SSR and DTR,and hence on their relationship.The largest correlations between SSR and DTR occurred in wintertime in northern China,regardless of all-day(including clear days and cloudy days) or clear-day cases.Our results also showed that radiation arriving at the surface in China decreased significantly during 1961-1989(dimming period),but began to increase during 1990-2008(brightening period),in agreement with previous global studies.The reduction of total SSR offset partially the greenhouse warming during 1961-1989.However,with the increase of SSR after 1990,this offsetting effect vanished;on the contrary,it even made a contribution to the accelerated warming.Nonetheless,the greenhouse warming still played a controlling role because of the increasing of minimum and mean surface temperatures in the whole study period of 1961-2008.We estimated that the greenhouse gases alone may have caused surface temperatures to rise by 0.31-0.46℃(10 yr) 1 during 1961-2008,which is higher than previously estimated.Analysis of the corresponding changes in total solar radiation,diffuse radiation,and total cloud cover indicated that the dimming and brightening phenomena in China were likely attributable to increases in absorptive and scattering aerosols in the atmosphere,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号