首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Time series of the dryness-wetness(DW) index of 531 yr(AD 1470-2000) at 42 stations in regions A(most of North China and the east of Northwest China) and B(the Yangtze-Huaihe River valley) in China are applied to investigating the historical DW characteristics over various periods of the series with a relatively stationary average value using Bernaola-Galvan(BG) algorithm.The results indicate that region A/B underwent three drought-intensive periods(DIP;1471-1560,1571-1640,and 1920-2000/1501-1540,1631-1690,and 1911-1960) in the last 531 years.In the DIP of the last 130 years,the frequency of DW transition has increased in region A,but not obviously changed in region B in comparison with the other two historical DIPs.The dry period started in about 1920 in region A with severe drought events occurring from the late 1970s to the early 1980s.It lasted for about 50-70 yr in this century,and then a DW shift took place.The wet period in region B might maintain for the coming several decades.The variations of DW in region A are positively correlated with changes in temperature,but in region B,the correlation with temperature is weaker.It is found that the number of DW indices of various categories within a running window is an exponential function of the running window length.The dryness scale factor(DSF) is defined as the reciprocal of the characteristic value of the exponential distribution,and it has a band-like fluctuation distribution that is good for the detection of extreme drought(flood) clustering events.The results show that frequencies of the severe large-scale drought events that concurrently occurred in regions A and B were high in the late 12th century,the early 13th century,the early 17th century,and the late 20th century.This provides evidence for the existence of the time-clustering phenomena of droughts(floods).  相似文献   

2.
In order to research possible influences of the adjustment of plant distribution on the development frequency of thunderstorms over the Leizhou Peninsula, mathematic statistic methods, including correlation analyses, 11 kinds of fitting models and all-variable regression methods, were used for analyses and research. The results show that the average trend of the number of annual thunderstorm days is descending obviously, and there are thunderstorms in all seasons, in which warm post-midday thunderstorms have taken up the most part, and high frequency is found from May to September, and the starting and ending dates of thunderstorms have a great annual discrepancy. The vegetation structure has been improved along with the reduction of rice fields and the area increment of sugarcane and fruits planting, which results in the decrease of the number of thunderstorm days; the change in the characteristics of winter spare fields, which is caused by the planting of vegetables, limits the formation of thunderstorms in early winter and late spring. Meanwhile, the area adjustment of peanut planting has little influence on the variation of thunderstorm days. The adjustment of principal crop distribution, such as rice, sugarcane, fruits and vegetables, may have obvious influence on the formation of thunderstorms, and sugarcane has the largest effect, followed in turn by rice, vegetables and fruits, and the adjustment of crop distribution has little influence on the starting and ending dates of thunderstorms.  相似文献   

3.
Based on multiresource high-resolution in situ and satellite merged observations along with model simulations from the Coordinated Regional Climate Downscaling Experiment(CORDEX), this study first investigated historical changes in extreme temperature and precipitation during the period of 1979–2018 in areas along the Sichuan–Tibet Railway, and then projected the future changes in the frequency and intensity of extreme temperature and precipitation under the RCP(Representative Concentration Pathway) 4.5 and 8.5 scenarios. This paper is expected to enhance our understanding of the spatiotemporal variability in the extreme temperature and precipitation along the Sichuan–Tibet Railway, and to provide scientific basis to advance the Sichuan–Tibet Railway construction and operation. The results show that temperatures in the Sichuan–Tibet region display a noticeable warming trend in the past40 years, and the increase of minimum temperature is significantly higher than that of maximum temperature in the northwest of the region. Significant increase of precipitation is found mainly over the northwest of the Tibetan Plateau. Except for Lhasa and its surrounding areas, precipitation over other areas along the Sichuan–Tibet Railway shows no significant change in the past 40 years, as indicated in five datasets; however, precipitation along the railway has shown a remarkable decrease in the past 20 years in the TRMM satellite dataset. The warm days and nights have clearly increased by 6 and 5 day decade1-for 1979–2019, while cold days and nights have markedly decreased by about 6.6 and 3.6 day decade-1, respectively. In the past 20 years, the areas with increased precipitation from very wet days and extremely wet days are mainly distributed to the north of the Sichuan–Tibet Railway, while in the areas along the railway itself, the very wet days and extremely wet days are decreasing. Under RCPs 4.5 and 8.5, the temperature in the Sichuan–Tibet region will increase significantly, and the frequency of extreme high(low) temperature events in the late 21 st century(2070–2099) will greatly increase(decrease) by about 50%–80%(10%) compared with occurrences in the late 20 th century(1970–1999). Meanwhile, the frequency of very wet days and extremely wet days in the Sichuan–Tibet region will increase by about 2%–19% and 2%–5%, respectively, and the areas along the Sichuan–Tibet Railway will be affected by more extreme high temperature and extreme precipitation events.  相似文献   

4.
Using the southern limit of snowfall recorded in Chinese documents, chronologies of tree-ring width, and tree-ring stable oxygen isotope(δ~(18)O), the annual temperature anomaly in southern China during 1850–2009 is reconstructed using the method of signal decomposition and synthesis. The results show that the linear trend was 0.47℃(100 yr)~(-1)over 1871–2009,and the two most rapid warming intervals occurred in 1877–1938 and 1968–2007, at rates of 0.125℃(10 yr)~(-1)and 0.258℃(10 yr)~(-1), respectively. The decadal variation shows that the temperature in the moderate warm interval of the 1910s–1930s was notably lower than that of the 1980s–2000s, which suggests that the warming since the 1980s was unprecedented for the past 160 years, though a warming hiatus existed in the 2000s. Additionally, there was a rapid cooling starting from the 1860s,followed by a cold interval until the early 1890s, with the coldest years in 1892 and 1893. A slight temperature decline was also found from the 1940s to the late 1960s. This study provides an independent case to validate the global warming for the past 160 years and its hiatus recently, because the proxy data are not affected by urbanization.  相似文献   

5.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

6.
Using the 1970–2005 annual precipitation and evaporation data at 80 gauge stations across Hunan province, this work analyzes the spatial distribution and variation tendency of the local droughts and floods using linear regression, wavelet analysis, abrupt change, clusters, Empirical Orthogonal Function (EOF) and rotated EOF (REOF). Results show that there are four dry areas and three wet areas in Hunan. The whole province exhibits a moistening trend except some small areas in western, eastern and southern Hunan. The most prominent feature of annual precipitation is that the whole province basically displays a consistent variation tendency, as far as the dominant EOF mode is concerned. In addition, the spatial features of the other EOF modes include dry-wet differences, e.g. wet (or dry) in the north versus dry (or wet) in the south, wet (or dry) in the center and dry (or wet) in the surrounding areas. The distribution of the ratios of evaporation to precipitation exhibits both common features as well as spatial differences, which can be classified into four types: South Hunan, North Hunan, Northeast Hunan, and Central Hunan. There is an abrupt change from dry to wet patterns in the early 1990s. Generally, the drought-flood distribution presents variations of three periods. In the late 2000s, Hunan province will be in a period of drought, followed by a period of flood.  相似文献   

7.
中国夏季极端酷暑的气候统计和趋势分析   总被引:2,自引:0,他引:2       下载免费PDF全文
Based on the daily maximum air temperature data from 300 stations in China from 1958 to 2008, the climatological distribution of the number of days with high temperature extremes (HTEs, maximum temperatures higher than 35℃) are studied with a focus on the long-term trends. Although the number of HTE days display well-defined sandwich spatial structures with significant decreasing trends in central China and increasing trends in northern China and southern China, the authors show that the decrease of HTE days in central China occurs mainly in the early period before the 1980s, and a significant increase of HTE days dominates most of the stations after the 1980s. The authors also reveal that there is a jump-like acceleration in the number of HTE days at most stations across China since the mid 1990s, especially in South China, East China, North China, and northwest China.  相似文献   

8.
Along the meridian of 105°E, the Chinese region are divided into two parts, east and west. The results show that in the east part of China the temperate extratropical belt, the warm extratropical belt,and the northern subtropical belt shift northward significantly, whereas the middle subtropical belt and the southern subtropical belt have less or no change. As for the northern subtropical belt, the maximal northward shift can reach 3.7 degrees of latitude. As for the warm extratropical belt, along the meridian of 120°-125°E, the maximal northward shift can reach 3-4 degrees. In the west part of China, each climatic belt changes little. Only in the Xinjiang area are the significant northward shifts. Correspondingly, it is found that in the last 50 years the traditional seasons have changed. For Beijing, Hailar, and Lanzhou, in general, summer becomes longer and winter shorter over the last 50 years. Summer begins early and ends late with respect to early 1950s. Contrary to the summer, winter begins la  相似文献   

9.
An objective identification technique for regional extreme events(OITREE) and the daily compositedrought index(CI) at 101 stations in Southwest China(including Sichuan, Yunnan, Guizhou, and Chongqing)are used to detect regional meteorological drought events between 1960 and 2010. Values of the parameters of the OITREE method are determined. A total of 87 drought events are identified, including 9 extreme events. The 2009–2010 drought is the most serious in Southwest China during the past 50 years. The regional meteorological drought events during 1960–2010 generally last for 10–80 days, with the longest being 231days. Droughts are more common from November to next April, and less common in the remaining months.Droughts occur more often and with greater intensity in Yunnan and southern Sichuan than in other parts of Southwest China. Strong(extreme and severe) regional meteorological drought events can be divided into five types. The southern type has occurred most frequently, and Yunnan is the area most frequently stricken by extreme and severe drought events. The regional meteorological drought events in Southwest China have increased in both frequency and intensity over the study period, and the main reason appears to be a significant decrease in precipitation over this region, but a simultaneous increase in temperature also contributes.  相似文献   

10.
The activity of South China Sea southwest monsoon (SCSSM) has direct impacts on the anomalies of important weather in Guangdong province during the raining seasons. So it is necessary to explore thoroughly the activity pattern of SCSSM and its relationship with important weather anomalies in the province. In this paper, the methods of composite analysis and correlation statistics are used to study the relationship between the onset date and intensity of SCSSM and the important weather, such as precipitation trends in Guangdong province during the annually first and second raining seasons, the timing of the annually first and last typhoon and the number of typhoons landing in Guangdong province. The results show that the rainfall is less than normal during the first raining season, but more than normal during the second one and there are more tropical cyclones landing in Guangdong province in the years of early SCSSM onset. The rainfall is more than normal during the second raining season and there are more tropical cyclones landing in Guangdong province in the years of strong SCSSM. The relationship between the SST of April - June, July - September and previous winter (December - February) and 500 hPa geopotential height and the onset date and intensity of SCSSM is analyzed. Some mechanisms between the onset dates and intensity of SCSSM and the important weather anomalies in Guangdong province are preliminarily explored. The results can be used for reference in short-term climate forecast.  相似文献   

11.
本文利用长沙区域4个气象站1971~2010年40年观测资料,研究了本区域雷暴的气候变化特征。研究结果表明:长沙区域雷暴日数呈东西山区多,中部平原少的空间分布特征,长沙东部和西部的浏阳、宁乡分别为最高和次高发区,年平均雷暴日数分别达62天和53天,而中部地区的马坡岭年平均雷暴日仅39天。在月变化特征上,长沙区域的雷暴主要出现在2~9月,且呈现出典型的双峰型结构,雷暴最多的月份分别出现在4月和8月。在6~9月,浏阳的雷暴日数要明显大于宁乡、望城和马坡岭的雷暴日数,而在其它月,4个观测站的雷暴日数相差不大。在日变化特征上,长沙区域4个测站的雷暴主要出现在午后到傍晚的时段其中以15~17时最多,在13~18时,浏阳的雷暴次数要比另外3个测站雷暴次数明显偏多。1971~2010年长沙区域4个测站的年雷暴日数均呈现出减少的趋势,其中以浏阳的减少趋势最为明显,2000年以后长沙区域4个测站的初雷日略有推迟,而终雷日明显提前。发生雷暴时,宁乡站对K指数及SI指数所代表的不稳定能量较其它3站略高。   相似文献   

12.
文章使用云南1961—2015年观测气象资料和RegCM4区域气候模式模拟的RCP4.5和RCP8.5情景下2016—2099年气候变化预估资料,计算了云南逐日气候舒适度指数,采用线性趋势和通径分析等方法分析了云南近55年气候舒适度的时空演变特征和变化成因,最后对未来变化趋势作了预估。结果显示:(1)云南观测资料多年平均值舒适日数最多,占全年的55%,南多北少,夏季最多;寒冷日数次多,占全年的23%,北多南少,冬季最多;冷日数比寒冷日数稍少,占全年的20%;热日数仅占全年的1%,闷热日数多年平均值为零。(2) 1961—2015年寒冷(舒适)日数年际和空间变化都呈明显的减少(增加)趋势,冷和热日数没有明显的变化趋势,闷热日数没有变化。(3)气温是云南气候舒适度各等级日数变化的主要因素,其次是风速,相对湿度只在温度高的情况下影响明显。(4) RCP4.5和RCP8.5两种情景下,2016—2099年云南寒冷(舒适)日数年际和空间变化都是减少(增加)的趋势;冷日数年变化是减少的趋势,空间变化为西北部增加;热日数只在RCP8.5情景下增加明显,主要是南部地区增加。  相似文献   

13.
宿州雷暴气候特征及其灾变G ANN预测模型研究   总被引:1,自引:0,他引:1  
根据宿州市5个气象站1957-2008年雷暴日观测资料,利用数理统计方法分析了宿州雷暴的时空分布规律,以及雷暴与降水、温度的关系。结果显示:宿州属于多雷区,南部多于北部,南北相差3.21-4.65天;年际变化大,年累计雷暴日最多相差37天,初终雷及无雷期年际间振荡的幅度较为剧烈,52年来累计雷暴日线性减少的趋势明显,减少幅度为1.61-2.89天/10a;季分布以夏季最多,冬季最少;月分布呈单峰型,雷暴多集中在4-9月,以7月最多,12月最少;日分布呈单峰型,以16:00-18:00频率最大;多年平均月雷暴日数序列与相应的气温、降水量之间呈显著正相关。为了进一步预测雷暴的长期演变趋势,以埇桥为例建立了雷暴多发年份灰色人工神经网络组合预测模型,预测下一个雷暴多发年将发生在2025年。  相似文献   

14.
江苏雷暴时空变化的气候特征分析   总被引:7,自引:3,他引:4  
利用江苏省1971-2000年全省地面测站的雷暴日记录,采用经验正交分解,分析了江苏省区域的雷暴空间分布特征与时间变化趋势,并用Morlet小波进行了周期分析.结果表明,江苏省雷暴呈逐年振荡减少的趋势;全区域变化一致,在此基础上,本省东南部与西北部的变化反相位;雷暴日变化存在一定的周期.本文对认识江苏省雷暴的规律、江苏省雷暴气候评估有一定的参考价值.  相似文献   

15.
近30年西藏地区雷暴变化特征   总被引:3,自引:1,他引:2  
利用西藏地区38个观测站点1979-2008年雷暴资料,采用旋转EOF分析、合成分析、小波分析及趋势分析等统计方法对西藏地区雷暴的时空变化规律进行了研究.结果表明:两藏地区以午后短时热力性雷暴为主,雷暴平均总次数存在准15年的周期变化,年雷暴平均总次数呈逐年减少趋势,2000年以后这种趋势更为明显.雷暴持续期变短,但也...  相似文献   

16.
半个世纪来惠州气温的变化特征   总被引:8,自引:1,他引:7  
利用广东省惠州市城市和乡村的气温资料,分析了半个世纪来惠州气温的变化特征和城市热岛效应对气温变化的影响.结果表明:(1) 惠州城市年和四季平均气温都呈显著上升趋势,其中冬季增温最大,Mann-Kendall突变检验显示年和四季都存在增温性突变,t检验表明突变前后均值有显著性差异.(2) 惠州城市年平均最高和最低气温呈非对称变化,最低气温的增温幅度大于最高气温,气温的日变化呈减小趋势;高温日数呈上升趋势,低温日数呈下降趋势.(3) 城乡气温的对比分析表明惠州城市气温的变化不仅受到区域气候变化的影响,城市化、工业化和人类活动引起的城市热岛效应对其也有重要影响,城市热岛效应的增温贡献率为38.1%.  相似文献   

17.
为了探究雷州半岛作物布局调整对雷暴发生的可能影响,以达到趋利避害,利用相关分析、11种模型拟合和全变量回归分析等数理统计方法进行了分析和研究。结果表明:雷州半岛年雷暴日数总的变化趋势是明显下降,一年四季均有雷暴天气,午后热雷雨占雷暴天气的大多数,其中5~9月雷暴日数最多,开雷、收雷年际变化差异大。随着稻田的减少,糖蔗、水果种植面积的增加,雷州半岛植被结构得到改善,雷暴天数呈明显减少趋势;蔬菜的种植改变了冬季闲田植被性质,不利于冬初、春末雷暴天气的生成;花生种植面积的调整对雷暴天数变化影响不大。雷州半岛水稻、糖蔗、水果、蔬菜等主要农作物布局调整对雷暴发生可能有明显的影响,主要农作物对雷暴天数可能影响从大到小依次为糖蔗、水稻、蔬菜和水果,农作物布局调整对年开雷、收雷的迟早没有影响。  相似文献   

18.
利用廊坊市9个气象站1964—2011年的雷暴日资料,通过数理统计、线性趋势拟合和小波分析,研究了廊坊市近48 a来雷暴的时空分布特征和周期性特征,并结合信息扩散法,进行了不同雷暴日数下的概率区划.结果表明:廊坊市雷暴日的年际变化幅度较大,年均雷暴日数总体呈下降趋势,约每10 a减少2 d;廊坊市雷暴月、季变化呈明显的单峰型,雷暴主要发生在4—10月,其中夏季(6—8月)占全年的74.5%;中北部的雷暴日数明显多于南部地区;10a及以上周期在绝大部分地区具有全域性,而短周期3~5 a大多表现在20世纪90年代之前;随着雷暴日数的增大,雷暴发生高概率区逐渐北移,当雷暴日数异常偏大(>40 d)时,中部的部分地区也处于雷暴发生高概率区.  相似文献   

19.
那曲地区雷暴天气时空变化特征及影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1966—2011年西藏自治区那曲地区所辖7个气象站的雷暴天气历史观测资料,综合运用天气学及线性统计方法、小波分析方法,分析那曲地区雷暴日数的时间和空间分布规律及影响因素。结果表明:那曲地区的雷暴日数存在显著减少趋势,减少趋势达到0.01的显著性水平,变化倾向率为每10年减少5 d;那曲地区雷暴日数空间分布特征为北部多南部少,东部高山峡谷多于西部湖盆;雷暴日数高值出现在东北部,低值出现在东南部。季节分布为夏季最多,春、秋季相对较少,冬季很少出现雷暴;雷暴初日推迟,而雷暴终日提前,雷暴期有缩短趋势。多雷期、少雷期的差异主要表现在西太平洋副热带高压脊线西伸脊点的经度位置、巴尔克什湖东部至青藏高原处高压脊和高原短波槽的位置和强弱上。那曲地区5—9月雷暴日数存在5~10年、20年两种尺度的周期变化规律,从不同时间尺度周期的变化趋势可以看出那曲地区将逐渐进入多雷期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号