首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
王怀清  殷剑敏  辜晓青  蔡哲 《气象》2011,37(10):1283-1291
热量资源是重要的农业气候资源,掌握其精细化分布情况,对于农业气候区划有重要意义,并对农业发展起科学的指导作用,为了得到全国各时间尺度的热量资源精细化资料,需要将不同时间尺度的气象站观测资料估算到无资料的细网格上。本文对比分析了反距离加权法(IDW)、梯度距离平方反比法(GIDW)、样条函数法(Spline)、克里格法(Kriging)和趋势面法估算全国热量资源的效果,采用1998—2007年全国651个基本、基准站的1月和7月平均气温、最高气温进行空间估算试验,用交叉检验的方法分析估算误差及其分布情况。分析结果表明,梯度距离反比法(GIDW)较好地反映了局地地形、海拔高度的影响,误差最小,估算结果最优,GIDW法对热量资源的估算误差较小,相对误差总体不超过5%。基于GIS软件平台,利用1971—2000年全国2346个站的资料采用GIDW法对全国的热量资源进行了估算,得到了年、季、月、旬尺度的平均气温分布图,并制作了稳定通过0,5,10,12,15℃界限温度的初终日序日、初终间日数、积温全国分布图,空间分辨率达0.01°。  相似文献   

2.
This article analyses the interactions between agricultural policy measures in the EU and the factors affecting GHG emissions from agriculture on the one hand, and the adaptation of agriculture to climate change on the other. To this end, the article uses Slovenia as a case study, assessing the extent to which Slovenian agricultural policy is responding to the challenges of climate change. All agricultural policy measures related to the 2007–2013 programming period were analysed according to a new methodological approach that is based on a qualitative (expert evaluation) and a quantitative (budgetary transfers validation) assessment. A panel of experts reached consensus on the key factors through which individual measures affect climate change, in which direction and how significantly. Data on budgetary funds for each measure were used as weights to assess their relative importance. The results show that there are not many measures in (Slovenian) agricultural policy that are directly aimed at reducing GHG emissions from agriculture or at adaptation to climate change. Nevertheless, most affect climate change, and their impact is far from negligible. Current measures have both positive and negative impacts, but overall the positive impacts prevail. Measures that involve many beneficiaries and more budgetary funds had the strongest impact on aggregate assessments. In light of climate change, agricultural policy should pay more attention to measures that are aimed at raising the efficiency of animal production, as it is the principal source of GHG emissions from agriculture.

Policy relevance

Agricultural policy must respond to climate challenges and climate change impact assessment must be included in the process of forming European agricultural policy. Agricultural policy measures that contribute to the reduction of emissions and adaptation, whilst acting in synergy with other environmental, economic and social goals, should be promoted. The approach used in this study combines qualitative and quantitative data, yielding an objective assessment of the climate impact of agricultural policy measures and providing policy makers with a tool for either ex ante or ex post evaluations of climate-relevant policy measures.  相似文献   

3.
Migration and climate change are two of the most important challenges the world currently faces. They are connected as climate change may stimulate or hinder migration. One of the sectors strongly affected by climate change is agriculture, which is the source of income for most of the world's poor. Climate change may affect agricultural productivity and hence migration because of its impact on average temperatures and rainfall and because it increases the frequency and intensity of weather shocks. In this paper we use data on 108 countries from 1960 to 2010 to analyze the relationship between weather variations, changes in agricultural productivity and international migration. We find that negative shocks to agricultural productivity caused by climate fluctuations significantly increase emigration from developing countries, an especially strong impact in poor countries but less so in middle income countries. These results are robust to the definitions of the poor country sample, and to several checks and alternative explanations suggested by the literature. Importantly, our results point to a causal interpretation of the agricultural channel to explain the climate change-migration nexus.  相似文献   

4.
Adaptation of agriculture to climate change   总被引:2,自引:1,他引:2  
Preparing agriculture for adaptation to climate change requires advance knowledge of how climate will change and when. The direct physical and biological impacts on plants and animals must be understood. The indirect impacts on agriculture's resource base of soils, water and genetic resources must also be known. We lack such information now and will, likely, for some time to come. Thus impact assessments for agriculture can only be conjectural at this time. How-ever, guidance can be gotten from an improved understanding of current climatic vulnerabilities of agriculture and its resource base, from application of a realistic range of climate change scenarios to impact assessment, and from consideration of the complexity of current agricultural systems and the range of adaptation techniques and policies now available and likely to be available in the future.  相似文献   

5.
Jan Beck 《Climatic change》2013,116(2):177-189
The susceptibility of agriculture to changing environmental conditions is arguably the most dangerous short-term consequence of climate change, and predictions on the geography of changes will be useful for implementing mitigation strategies. Ecological niche modeling (ENM) is a technique used to relate presence records of species to environmental variables. By extrapolation, ENM maps the suitability of a landscape for the species in question. Recently, ENM was successfully applied to predict the geographic distribution of agriculture. Using climate and soil conditions as predictor variables, agricultural suitability was mapped across the Old World. Here, I present analogous ENM-based maps of the suitability for agriculture under climate change scenarios for the year 2050. Deviations of predicted scenarios from a current conditions model were analyzed by (1) comparing relative average change across regions, and (2) by relating country-wide changes to the data indicative of the wealth of nations. The findings indicate that different regions vary considerably in whether they win or lose in agricultural suitability, even if average change across the entire study region is small. A positive relationship between the wealth of nations and change in agriculture conditions was found, but variability around this trend was high. Parts of Africa, Europe and southern and eastern Asia were predicted to be particularly negatively affected, while north-eastern Europe, among other regions, can expect more favorable conditions for agriculture. The results are presented as an independent “second opinion” to previously published, more complex forecasts on agricultural productivity and food supply variability due to climatic change, which were based on fitting environmental variables to yield statistics.  相似文献   

6.
Policy measures regarding adaptation to climate change include efforts to adjust socio-economic and ecologic systems. Colombia has undertaken various measures in terms of climate change mitigation and adaptation since becoming a party of the Kyoto protocol in 2001 and a party of the United Nations Framework Convention on Climate Change (UNFCCC) in 1995. The first national communication to the UNFCCC stated how Colombian agriculture will be severely impacted under different emission scenarios and time frames. The analyses in this document further support that climate change will severely threaten the socioeconomics of Colombian agriculture. We first query national data sources to characterize the agricultural sector. We then use 17 Global Circulation Model (GCM) outputs to quantify how Colombian agricultural production may be affected by climate change, and show the expected changes to years 2040–2069 (“2050”) under the A2 scenario of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2) and the overall trends in both precipitation and temperature to 2100. We then evaluate expected changes within different regions and measure the proportion of area affected within each crop’s distributional range. By 2050, climatic change in Colombia will likely impact 3.5 million people, 14?% of national GDP corresponding to agriculture, employment of 21?% of the population, agro-industries, supply chains, and food and nutritional security. If no adaptation measures are taken, 80?% of crops would be impacted in more than 60?% of their current areas of cultivation, with particularly severe impacts in high value perennial and exportable crops. Impacts also include soil degradation and organic matter losses in the Andes hillsides; likely flooding in the Caribbean and Pacific coasts; niche losses for coffee, fruit, cocoa, and bananas; changes in prevalence of pests and diseases; and increases in the vulnerabilities of non-technically developed smallholders. There is, however, still time to change the current levels of vulnerability if a multidisciplinary focus (i.e., agronomic, economic, and social) in vulnerable sectors is undertaken. Each sub-sector and the Government need to invest in: (1) data collection, (2) detailed, regionally-based impact assessments, (3) research and development, and (4) extension and technology transfer. Support to vulnerable smallholders should be given by the state in the form of agricultural insurance systems contextualized under the phenomenon of climate change. A national coordination scheme led by (but not restricted to) the Ministry of Agriculture and Rural Development (MADR) with the contributions of national and international institutions is needed to address agricultural adaptation.  相似文献   

7.
During the last decades, a large number of climate change impact studies on agriculture have been conducted qualitatively and quantitatively in many regions of the Asia-Pacific. Changes in average climate conditions and climate variability will have a significant consequence on crop yields in many parts of the Asia-Pacific. Crop yield and productivity changes will vary considerably across the region. Vulnerability to climate change depends not only on physical and biological response but also on socioeconomic characteristics. Adaptation strategies that consider changes in crop varieties or in the timing of agricultural activities imply low costs and, if readily undertaken, can compensate for some of the yield loss simulated with the climate change scenarios. The studies reviewed here suggest that the regions of Tropical Asia appear to be among the more vulnerable; some areas of Temperate Asia also appear to be vulnerable.  相似文献   

8.
气候变化对中国农业生产的影响研究进展   总被引:54,自引:6,他引:48       下载免费PDF全文
气候变化已成为当今科学界、各国政府和社会公众普遍关注的环境问题之一,气候变化可能对生态系统和社会经济产生灾难性影响,农业是受气候变化影响最直接的脆弱行业。因此,气候变化对农业生产的影响研究一直是气候变化研究领域中的热点问题之一。该文系统介绍了有关全球气候变化对中国农业生产影响研究的现状与进展,包括气候变化对农业影响的研究方法、大气中温室气体浓度增加对农作物的影响试验、气候变化对农业气候资源的影响、气候变化对农作物生长发育和产量的影响、气候变化对农业种植制度和品种布局的影响、气候变化对农作物气候生产潜力和气候资源利用率的影响等,指出当前在研究气候变化对农业影响评估中存在的问题,提出了今后应加强对气候变化情景和预测模式不确定性的研究、气候变化对农业影响的方法研究。此外,气候变化背景下极端天气气候事件对农业生产的影响以及气候变化对农业病虫害的影响研究等仍较薄弱,有待进一步加强和深入。  相似文献   

9.
Climate change will affect agricultural production by subsistence farms in crop centers of origin, where landraces are conserved in situ. Various strategies for adaptation to climate change have been proposed. In this paper we examine the prospects of what we call the ‘transgenic adaptation strategy’, i.e. the appeal to use transgenic seeds to adapt to climate change, through the lens of smallholder maize farming in Mexico. Landraces are the bedrock of maize production in Mexico. We consider how maize farmers may respond to climate change and the effects of those responses on crop diversity. In this paper, we argue that the promotion of the transgenic adaptation strategy is problematic for biological and social reasons. Smallholder livelihoods in southern Mexico could suffer a disproportionate negative impact if transgenic technology is privileged as a response to climate change. Agroecological and evolutionary approaches to addressing the effects of climate change on smallholder agriculture provides an alternative adaptive strategy.  相似文献   

10.
Because of population growth, economic development, and technological change, world and mid-latitudes agriculture will look very different than they do today by the time 2 × CO2 climate change begins to have major impact. It does not appear that that impact would seriously restrain the growth of world agricultural capacity. However, significant shifts in regional comparative advantage in agriculture would be likely. Because the consequences of 2 × CO2 climate change for agriculture would vary among countries - some suffering losses, others seeing themselves as potential winners - these consequences could impede international agreements to control climate change. However, even countries gaining agricultural advantage from climate change will need changes in policy to capture the gains. And policies to lessen the costs to the losers will be essential. If global warming continues beyond that associated with 2 × CO2, all countries in time would be losers.  相似文献   

11.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

12.
Based on a Ricardian analysis accounting for spatial autocorrelation and relying on recent climate change forecasts at a low spatial scale, this study assesses the impact of climate change on German agriculture. Given the limited availability of data (e.g., the unknown average soil quality at the district level), a spatial error model is used in order to obtain unbiased marginal effects. The Ricardian analysis is performed using data from the 1999 agricultural census along with data from the network of German weather observation stations. The cross-sectional analysis yields an increase of land rent along with both a rising mean temperature and a declining spring precipitation, except for in the Eastern part of the country. The subsequent simulation of local land rent changes under three different IPCC scenarios is done by entering into the estimated regression equations spatially processed data averages for the period between 2011 and 2040 from the regional climate model REMO. The resulting expected benefits arising from climate change are represented in maps containing the 439 German districts; the calculated overall rent increase corresponds to approximately 5–6% of net German agricultural income. However, in the long run, when temperature and precipitation changes will be more severe than those simulated for 2011–2040, income losses for German agriculture cannot be excluded.  相似文献   

13.
Climate Change and Agricultural Soils: Impacts and Adaptation   总被引:8,自引:1,他引:7  
This article reviews the current state of knowledge on the response of soils to climate change, and the implications such changes have for agriculture. The article is based on the material reported in the IPCC second assessment report (Watson et al., 1996) and updated with more recent information, where appropriate. The review highlights the importance of understanding the dynamics of soil processes when addressing climate change impacts on agriculture. Rapid soil responses to climate change (e.g. soil water, organic carbon and erodibility) have been widely investigated and reported in the literature. However, it is important that longer-term processes (e.g. pedogenesis) are not ignored by the research community because these have potentially important implications for long-term agricultural land use and are often irreversible. The use of good land management practices, as currently understood, provides the best strategy for adaptation to the impact of climate change on soils. However, it appears likely that farmers will need to carefully reconsider their management options, and land use change is likely to result from different crop selections that are more appropriate to the changing conditions. Perhaps the greatest impact of climate change on soils will arise from climate-induced changes in land use and management.  相似文献   

14.
Study on the Impacts of Climate Change on China's Agriculture   总被引:1,自引:0,他引:1  
This paper measures the economic impacts of climate change on China's agriculture based on the Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture dominated counties, we find that under most climate change scenarios both higher temperature and more precipitation would have an overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Autumn effect is the most positive, but spring effect is the most negative. Applying the model to five climate scenarios in the year 2050 shows that the East, the Central part, the South, the northern part of the Northeast, and the Plateau would benefit from climate change, but the Southwest, the Northwest and the southern part of the Northeast may be negatively affected. In the North, most scenarios show that they may benefit from climate change. In summary, all of China would benefit from climate change in most scenarios.  相似文献   

15.
Scientific and technical information can increase the ability of policy makers to make strategic decisions. However, climate change policy is often formulated without significant input from science. We examine whether the availability and accessibility of information related to climate change is a major barrier for policy action on climate change adaptation for smallholder farmers. We also investigate whether scientific information related to climate change is available and used in policy making in Central America and Mexico. Our online survey of 105 decision makers indicated that a lack of scientific and technical information hinders policy makers from developing policies to help smallholder farmers adapt to climate change. Specific needs include information on the impacts of climate change on water availability for agriculture and the areas that are or will be prone to flooding, droughts or landslides. Information about the location of the farmers who are most vulnerable to climate change, the projected temperature and precipitation in agricultural areas and the expected impacts of climate change on crop yields or animal productivity, is also needed. Despite high interest in having scientific information guide policy making, many respondents indicated that policy makers rarely use this information in adaptation planning. In addition to ensuring that relevant information is available to inform policy making, technical and scientific information must be published in venues that are readily accessible for policy makers, easy to understand, and written in a format that is policy-relevant. It is also critical that scientific articles provide specific recommendations for achieving desired policy outcomes.  相似文献   

16.
Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.  相似文献   

17.
Nearly all of Ethiopia’s agriculture is dependent on rainfall, particularly the amount and seasonal occurrence. Future climate change predictions agree that changes in rainfall, temperature, and seasonality will impact Ethiopia with dramatic consequences. When, where, and how these changes will transpire has not been adequately addressed. The objective of our study was to model how projected climate change scenarios will spatially and temporally impact cereal production, a dietary staple for millions of Ethiopians. We used Maxent software fit with crop data collected from household surveys and bioclimatic variables from the WorldClim database to develop spatially explicit models of crop production in Ethiopia. Our results were extrapolated to three climate change projections (i.e., Canadian Centre for Climate Modeling and Analysis, Hadley Centre Coupled Model v3, and Commonwealth Scientific and Industrial Research Organization), each having two emission scenarios. Model evaluations indicated that our results had strong predictability for all four cereal crops with area under the curve values of 0.79, 0.81, 0.79, and 0.83 for teff, maize, sorghum, and barley, respectively. As expected, bioclimatic variables related to rainfall were the greatest predictors for all four cereal crops. All models showed similar decreasing spatial trends in cereal production. In addition, there were geographic shifts in land suitability which need to be accounted for when assessing overall vulnerability to climate change. The ability to adapt to climate change will be critical for Ethiopia’s agricultural system and food security. Spatially explicit models will be vital for developing early warning systems, adaptive strategies, and policy to minimize the negative impacts of climate change on food production.  相似文献   

18.
This paper provides one of the first empirical studies that examine the impact of climate change adaptation practices on technical efficiency (TE) among smallholder farmers in Nepal. An adaptation index is used to explore the impact of farmers’ adaptation on TE using the stochastic frontier analysis framework. Data for six districts of Nepal representing all three agro-ecological regions (terai, hill, and mountain) were collected from a focus group discussion, a stakeholder workshop and a household survey. The survey shows that about 91% of the farming households have adopted at least one practice to minimize the adverse impacts of climate change. Empirical results reveal that adaptation is an important factor explaining efficiency differentials among farming households. Those adopting a greater number of adaptation practices on a larger scale are, on average, found to be 13% more technically efficient than those adopting fewer practices on smaller scale. The empirical results also show that average TE is only 0.72, indicating that there are opportunities for farming households in Nepal to further improve productive efficiency, on average by 28%. Other important factors that explain variations in the productive efficiency across farming households include farmer’s education level, irrigation facilities, market access, and social capital such as farmer’s participations in relevant agricultural organizations and clubs. This study provides empirical evidence to policy makers that small scale adjustments made by farmers in response to climate change impacts are effective in improving farmers’ efficiency in agriculture production. This indicates a need for farmers’ involvement in climate change adaptation planning.  相似文献   

19.
It is expected that a warmer climate would be beneficial for agriculture in high latitudes. However, this general tendency is not necessarily true for all northern countries, as a short growing period is not the only factor limiting agriculture. For Russia, our model shows that the remarkable increase in potential yield in central and northern-forested regions would not compensate for a sharp drop in yields due to increasing frequency of droughts in the currently most productive southern European regions. If this scenario is indeed realized, the majority of Russian regions will continue to rely on import of agricultural products from a few regions with the best soils, and a system of interregional grain trade will remain critical for food security. However, the basic rules of interregional food market have varied widely over the past century. We have attempted an analysis of the potential impact of these basic rules on regional food security by describing four basic historical market scenarios and applying these scenarios to our results for climate change impact on agriculture in the 2020s and 2070s. We show that the current system, if it continues, would bring the worst results. We also show that the traditionally effective planned adaptation measures would help little in future climate conditions if the current market system were still in place.  相似文献   

20.
基于在云南省西部保山地区开展的入户问卷调查和关键信息人访谈,探讨在发生旱灾,大量农民外出务工以弥补旱灾给家庭和农业生产带来的损失这一特定背景下,对比外出务工农户和非外出务工农户在收入来源、应对旱灾措施和家庭收入分配上的差异,分析外出务工对农民适应气候变化能力带来的影响。结果表明:外出务工收入给留守家庭的气候变化适应能力带来了积极的影响;另外一方面,大量青壮年劳动力的外出让经济结构仍然以农业为主的村庄出现劳动力缺乏、农业发展后续动力不足等潜在问题。建议在未来针对外出务工人口开展的职业培训中增加诸如家庭财务管理、气候变化等相关内容来加强农村地区和农民的气候变化适应能力,建议政府推广气候智能农业,采取本地化/本土化的适应措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号