首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

2.
Summary The interannual variability of sea surface temperature (SST) anomalies in the tropical Indian Ocean is dominated mainly by a basin-scale mode (BM) and partly by an east–west contrast mode (zonal mode, ZM). The BM reflects the basin-scale warming or cooling and is highly correlated with El Nino with 3- to 6-month lags, while the ZM is marginally correlated with El Nino with 9-month lags.During an El Nino, large-scale anomalous subsidence over the maritime continent occurs as a result of an eastward shift in the rising branch of the Walker circulation suppresses convection over the eastern Indian Ocean, allowing more solar radiation over the eastern Indian Ocean. At the same time, the anomalous southeasterly wind over the equatorial Indian Ocean forces the thermocline over the western Indian Ocean to deepen, especially in the southern part. As a result, SST over the whole basin increases. As El Nino decays, the subsidence over the maritime continent ceases and so does the anomalous southeasterly wind. However, the thermocline perturbation does not quickly shoal back to normal because of inertia and it disperses as Rossby waves. These Rossby waves are reflected back as an equatorial Kelvin wave, causing deepening of the thermocline in the eastern Indian Ocean, and preventing SSTs from cooling in that region. Moreover, the weaker wind speed of the monsoon circulation results in less latent heat loss, and thus warms the eastern Indian Ocean. These two processes therefore help to maintain warm SSTs over the eastern Indian Ocean until fall. During the fall, the warm SST over the eastern Indian Ocean and the cold SST over the western Indian Ocean are enhanced by air–sea interaction and the ZM returns. The ZM dissipates through the seasonal reversal of the monsoon atmospheric circulation and the boundary-reflected Kelvin wave. In the same manner, a basin-scale cooling in the tropical Indian Ocean can induce the ZM warming in the west and cooling in the east.  相似文献   

3.
ABSTRACT

South Indian Ocean Rossby waves (SIO-RW) are identified in the Global Ocean Data Assimilation System (GODAS) 1.5–7?yr filtered sea surface height (SSH) time series. There is a persistent three-year oscillation in the 5°–15°S latitude band from 55° to 85°E. Field correlations show little coupling at 90°E, but as the SIO-RW undulates westward at approximately 0.19?m?s?1 across the mid-basin, a northwest–southeast axis of warm sea surface temperatures (SSTs) and deep convection forms. Many teleconnections in earlier work are confirmed: interannual pulses of zonal wind in the eastern basin trigger the SIO-RW via anticyclonic wind stress curl. New insights derive from an understanding of links with the upper troposphere. As the SIO-RWs move westward with the onset of an El Niño in the Pacific, increased convection over the north Indian Ocean corresponds to reduced evaporation and SST warming. Mid-tropospheric heating T′?>?2°C over the northwest Indian Ocean accelerates the southern sub-tropical jet to greater than 10?m?s?1 over the southeast Indian Ocean, reinforcing the anticyclonic vorticity. The downstream acceleration of the jet generates upper-level divergence and moist convection over the western basin, anchoring an atmospheric Rossby wave in a northwest–southeast alignment underpinned by differential propagation of the SIO-RW. As the ocean Rossby wave reaches Africa, the coupling fades and transitions. What distinguishes Indian Ocean from Pacific Ocean Rossby waves are their southern latitude and higher frequency. The tropical mid-tropospheric heating that accelerates the southern sub-tropical jet shifts westward in tandem with the SIO-RW.  相似文献   

4.
This study evaluates the convectively coupled equatorial waves in ten coupled general circulation models (GCMs) in the twentieth century experiment from the Coupled Model Intercomparison Project phase 3 of the World Climate Research Programme. The antisymmetric bands in all GCMs are weaker than in observations, and the mixed Rossby-gravity (MRG) wave seems to be a mixture of the equatorial Rossby (ER) and tropical depression-type (TD-type) waves rather than a mixture of the ER and inertiogravity waves found in observations. The simulated TD-type wave is more organized than in observations with a quasilinear wavenumber–frequency relationship. In most GCMs, the two observed activity centers of the MRG and TD-type waves over the southern Indian Ocean and the southwestern Pacific cannot be separated; only one wave activity center is found over the Maritime Continent. The observed northwestward propagation of the TD-type wave over the western North Pacific is also not well simulated in the GCMs. The simulated active season of the MRG and TD-type waves over the northern hemisphere during the boreal summer and fall is much shorter than in observations. The models from CCSR utilizing the Pan and Randall scheme with the convection suppression simulate the realistic Kelvin wave activity with the maximum activity near the equator, while the wave activities filtered for the Kelvin wave in the other GCMs are similar to the extratropical Rossby wave with the maximum activity at higher latitudes. Likewise, only these two models produce a realistic seasonal cycle of the Kelvin wave activity.  相似文献   

5.
6.
The observed sequence of events leading to the onset of the summer monsoon in the South China Sea (SCS) is described, with a particular focus on conditions during the South China Sea monsoon experiment (SCSMEX) in May–June 1998. During SCSMEX, SCS monsoon onset occurred within the context of a multitude of scale interactions within the ocean-atmosphere system on intraseasonal time scales. Results from the 1998 SCSMEX case study illustrate that SCS monsoon onset is preceded by the development of an eastward-propagating Madden-Julian Oscillation (MJO) in the Indian Ocean, as suggested by previous authors, and the subsequent emanation of a convectively coupled Kelvin wave into the Pacific. Remarkably similar results are obtained in an independent composite of 25 years of data. Since both the MJO and Kelvin waves generate westerly surface winds in their wake, it is suggested that these waves may accelerate or trigger the monsoon onset process in the southern SCS. A detailed analysis of the Kelvin wave that propagated through the SCS during SCSMEX shows that it was responsible for a large portion of the surface wind shift leading to monsoon onset in 1998. Finally, easterly wind anomalies in the eastern Pacific associated with the Indian Ocean MJO event during the SCSMEX period are shown to result in the sudden demise of the 1997–1998 El Niño event.  相似文献   

7.
8.
文中利用EOF分析大气季节内振荡 (MJO)的时空变化的方法 ,研究了 1996年 9月~ 1997年 6月间的MJO活动对生成在印度洋—西太平洋海域的热带低压 /气旋的影响。结果发现 ,除西北太平洋之外 ,发生在其他区域的热带低压 /气旋有半数以上生成在向东移动的MJO的湿位相中。伴随MJO的向东传播 ,热带低压 /气旋平均生成位置也随之向东移动 ,而生成在西北太平洋的热带低压 /气旋分别受到向东和向西传播的MJO影响  相似文献   

9.
夏季印度洋海盆模与MC区域降水异常联系的进一步分析   总被引:1,自引:0,他引:1  
汪婉婷  管兆勇  许琪  王悦 《气象科学》2017,37(6):709-717
利用英国哈德莱中心的逐月海表温度资料及NCEP/NCAR月平均再分析资料等,通过在印度洋海盆模IOBM指数(IIOB)中扣除长期趋势和两类ENSO的同期信号后,得到了修正的IOBM指数(Im IOB),并由此分析了IOBM的变化及与海洋性大陆区域降水异常的联系。结果表明:印度洋IOBM为暖位相时,不同季节的印度洋地区均呈现异常偏暖,但大气是上升还是下沉运动则在印度洋不同季节和不同区域存在很大变化。就夏季而言,印度洋大部分地区存在上升运动,这与海温异常偏暖有关。在北半球夏季,指数Im IOB存在3~5 a的周期变化。当IOBM处于正位相时,印度洋至我国东海地区大范围海温偏暖。MC(Maritime Continent,海洋性大陆)区域西部降水正异常,而MC区域东北部降水为负异常。造成这种降水分布的原因是:当指数为正时,在MC区域的西部对流层低层辐合、高层辐散,上升运动增强,且水汽辐合,而MC区域的东北部对流层低层辐散、高层辐合,上升运动不明显,水汽辐散,不易形成降水。而在对流层低层与西太平洋辐散中心对应,南北半球出现关于赤道对称的反气旋对,赤道印度洋上的异常加热激发东传的Kelvin波,加强东风异常,同时加强了KMC(海洋性大陆的核心区域)之外南北半球热带地区的这对Rossby波型。以上这些结果有利于深刻理解MC降水异常成因及热带海陆气相互作用过程。  相似文献   

10.
于乐江  胡敦欣  冯俊乔 《大气科学》2011,35(6):1091-1104
利用1951~1998年多种大气和海洋资料,研究了太平洋和印度洋在南海夏季风爆发中的作用.结果表明,影响南海夏季风爆发早晚的因素存在着年代际变化:1951~1970年,印度洋起主要作用;1970~1998年西太平洋起主要作用.该年代际变化主要是1970年前后北极涛动(AO)的跃变以及西太平洋副高强度变化的结果.1951...  相似文献   

11.
Based on instability theory and some former studies, the Simple Ocean Data Assimilation (SODA) data are analyzed to further study the difference between the propagation of the ENSO-related oceanic anomaly in the off-equatorial North Pacific Ocean before and after 1976. The investigation shows that after 1976 in the off-equatorial North Pacific Ocean, there is a larger area where the necessary conditions for baroclinic and/or barotropic instability are satisfied, which may help oceanic anomaly signals propagating in the form of Rossby waves to absorb energy from the mean currents so that they can grow and intensify. The baroclinic energy conversion rate in the North Pacific after 1976 is much higher than before 1976, which indicates that the baroclinic instability has intensified since 1976. Prom another perspective, the instability analysis gives an explanation of the phenomena that the ENSO-related oceanic anomaly signal in the North Pacific has intensified since 1976.  相似文献   

12.
This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.  相似文献   

13.
This study examines wave disturbances on submonthly (6–30-day) timescales over the tropical Indian Ocean during Southern Hemisphere summer using Japanese Reanalysis (JRA25-JCDAS) products and National Oceanic and Atmospheric Administration outgoing longwave radiation data. The analysis period is December–February for the 29 years from 1979/1980 through 2007/2008. An extended empirical orthogonal function (EEOF) analysis of daily 850-hPa meridional wind anomalies reveals a well-organized wave-train pattern as a dominant mode of variability over the tropical Indian Ocean. Daily lagged composite analyses for various atmospheric variables based on the EEOF result show the structure and evolution of a wave train consisting of meridionally elongated troughs and ridges along the Indian Ocean Intertropical Convergence Zone (ITCZ). The wave train is oriented in a northeast–southwest direction from Sumatra toward Madagascar. The waves have zonal wavelengths of about 3,000–5,000 km and exhibit westward and southwestward phase propagation. Individual troughs and ridges as part of the wave train sequentially travel westward and southwestward from the west of Sumatra into Madagascar. Meanwhile, eastward and northeastward amplification of the wave train occurs associated with the successive growth of new troughs and ridges over the equatorial eastern Indian Ocean. This could be induced by eastward and northeastward wave energy dispersion from the southwestern to eastern Indian Ocean along the mean monsoon westerly flow. In addition, the waves modulate the ITCZ convection. Correlation statistics show the average behavior of the wave disturbances over the tropical Indian Ocean. These statistics and other diagnostic measures are used to characterize the waves obtained from the composite analysis. The waves appear to be connected to the monsoon westerly flow. The waves tend to propagate through a band of the large meridional gradient of absolute vorticity produced by the mean monsoon westerly flow. This suggests that the monsoon westerly flow provides favorable background conditions for the propagation and maintenance of the waves and acts as a waveguide over the tropical Indian Ocean. The horizontal structure of the wave train may be interpreted as that of a mixture of equatorial Rossby waves and mixed Rossby-gravity wavelike gyres.  相似文献   

14.
The large sea surface temperature variations induced by the Madden-Julian Oscillation (MJO) on the northwest shelf of Australia and the remote influence of the MJO on the subtropical Western Australian coast are explored using the POAMA Ensemble Ocean Data Assimilation System reanalyses (PEODAS) for the period 1980–2010. The focus here is during the November–April extended summer season when the impacts of the MJO on and along the west coast of Australia are greatest. The MJO is well known to force equatorial Kelvin and Rossby waves in the Indian Ocean, and these are well depicted in the PEODAS reanalyses. When the downwelling Kelvin waves (forced by the westerly-convective phase of the MJO) reach the Indonesian region at the eastern boundary of the Indian Ocean, a coastally trapped Kelvin wave appears to propagate southeast along the Indonesian coastline. At the same time, the suppressed convection/easterly phase of the MJO arrives in the eastern Indian Ocean, with increased heat flux into the ocean due to reduced latent heat flux and increased insolation. The coastally trapped Kelvin waves do not appear to get onto the Western Australian coast. Rather, the increased heat flux and Ekman-induced downwelling onto the northwest (NW) coast in the suppressed/easterly phase of the MJO drive an increase in sea surface temperature on the NW Australian shelf. The piling up of warm water and associated sea level rise on the NW shelf is then communicated down the Western Australian coast as a coastally trapped wave, resulting in an increase in the Leeuwin current. Thus we conclude that the MJO signal in sea level along the west coast of Australia does not result from transmission of equatorial waves onto the Western Australian coast, but rather a southward-propagating coastal trapped wave that is directly forced on the NW shelf through Ekman-induced vertical advection and surface heat fluxes in the easterly phase of the MJO. Additionally, subtropical coastal sea level variability is reinforced locally via a teleconnection of the MJO to the local meridional wind off the southwest Australian coast. Considering the capability to predict the MJO to about 4 weeks lead time plus the 2 weeks taken for the MJO signal on the NW shelf to influence sea level at Fremantle, the use of MJO forecasts in management of the Western Australian marine environment should be considered for future application.  相似文献   

15.
Evolution of Indian Ocean Dipole (IOD) events in 2003, 2006 and 2007 is investigated using observational and re-analysis data products. Efforts are made to understand various processes involved in three phases of IOD events; activation, maturation and termination. Three different triggers are found to activate the IOD events. In preceding months leading to the IOD evolution, the thermocline in southeastern Indian Ocean shoals by reflection of near equatorial upwelling Rossby waves at the East African coast into anomalous upwelling equatorial Kelvin waves. Strengthening (weakening) of northern (southern) portion of ITCZ in March/April and May/June of IOD years, leads to strengthening of alongshore winds along Sumatra/Java coasts. With the combined shallow thermocline and increased latent heat flux due to enhanced wind speeds, the SST in the southeastern Indian Ocean cools in following months. On intraseasonal time scales convection-suppressing phase of Madden-Julian oscillation (MJO) propagates from west to east in May/June of IOD year, and easterlies associated with this phase of MJO causes further shoaling of thermocline in southeastern Indian Ocean, through anomalous upwelling Kelvin wave. All these three mechanisms appear to be involved in initiating IOD event in 2006. On the other hand, except the strengthening/weakening of ITCZ, all other mechanisms are involved in activation of 2003 IOD event. Activation of 2007 IOD event was due to propagation of convection-suppressing MJO in May/June and strengthening of mean winds along Sumatra/Java coast from March to June through changes in convection. The IOD events matured into full-fledged events in the following months after activation, by surface heat fluxes, vertical and horizontal advection of cool waters supported by local along-shore upwelling favorable winds and remote equatorial easterly wind anomalies through excitation of upwelling Kelvin waves. Propagating MJO signals in the tropical Indian Ocean brings significant changes in evolution of IOD events on MJO time scales. Termination of 2003 and 2007 IOD events is achieved by strong convection-enhancing MJOs propagating from west to east in the tropical Indian Ocean which deepen the thermocline in the southeastern equatorial Indian Ocean. IOD event in 2006 was terminated by seasonal reversal of monsoon winds along Sumatra/Java coasts which stops the local coastal upwelling.  相似文献   

16.
The empirical orthogonal function (EOF) analysis of subsurface temperature shows a dominant north-south mode of interannual variability in the Tropical Indian Ocean (TIO) at around 100 m depth (thermocline). This subsurface mode (SSM) of variability evolves in September-November (SON) as a response to Indian Ocean Dipole and intensifies during December-February (DJF) reinforced by El Niño and Southern Oscillation (ENSO) forcing. The asymmetry in the evolution of positive and negative phases of SSM and its impacts on the modulation of surface features are studied. The asymmetry in the representation of anomalous surface winds along the equator and off-equatorial wind stress curl anomalies are primarily responsible for maintaining the asymmetry in the subsurface temperature through positive and negative phases of the SSM. During the positive phase of SSM, downwelling Rossby waves generated by anticyclonic wind stress curl propagate towards the southwestern TIO (SWTIO), the thermocline ridge region of mean upwelling. The warmer subsurface water associated with the downwelling Rossby waves upwells in the region of mean upwelling and warms the surface resulting in strong subsurface-surface coupling. Such interaction processes are however weak during the negative phase of SSM. The asymmetry in the subsurface-surface interaction during the two phases of SSM and its impact on the modulation of surface features of TIO are also reported. In addition to the ENSO forcing, self-maintenance of SSM during DJF season is evident in the positive SSM (PSSM) years through modulation of subsurface surface coupling and air-sea coupling. This positive feedback during PSSM years is maintained by the deepening thermocline, warm SSTs and convection. The asymmetry in the thermocline evolution is more evident in the SWTIO and southern TIO.  相似文献   

17.
热带大洋东、西部对风应力经圈不对称的响应   总被引:3,自引:0,他引:3  
巢纪平  陈峰 《大气科学》2000,24(6):723-738
热带海洋,特别是热带太平洋,物理场在东、西两部分的经圈结构很不相同,西太平洋“暖池”的温度分布对赤道基本上是对称的,而东太平洋的“冷舌”偏在赤道以南,对赤道明显不对称。作者从波动性质解释了这种分布的特征,指出在西太平洋,由于对赤道对称的向东的Kelvin波具有较大的振幅,其权重明显大于Rossby短波,致使物理场具有对赤道的对称性;而在东太平洋,由边界激发出的偶次的和奇次的Rossby长波,振幅权重很相近,从而使物理场显不对称性。  相似文献   

18.
The present study investigates the role of Kelvin wave propagations along the equatorial Indian Ocean during the 2006–2008 Indian Ocean Dipole (IOD). The 2006 IOD lasted for seven months, developing in May and reaching its peak in December, while the 2007 and 2008 IODs were short-lived events, beginning in early May and ending abruptly in September, with much weaker amplitudes. Associated with the above IODs, the impulses of the sea surface height (SSH) anomalies reflect the forcing from an intraseasonal time scale, which was important to the evolution of IODs in 2007 and 2008. At the thermocline depth, dominated by the propagation of Kelvin waves, the warming/cooling temperature signals could reach the surface at a particular time. When the force is strong and the local thermocline condition is favorable, the incoming Kelvin waves dramatically impact the sea surface temperature (SST) in the eastern equatorial Indian Ocean. In July 2007 and late July 2008, the downwelling Kelvin waves, triggered by the Madden-Julian Oscillation (MJO) in the eastern and central equatorial Indian Ocean, suppressed the thermocline in the Sumatra and the Java coast and terminated the IOD, which made those events short-lived and no longer persist into the boreal fall season as the canonical IOD does.  相似文献   

19.
Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Ni?o, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated.  相似文献   

20.
The present study investigates the relationship between extreme north-east (NE) monsoon rainfall (NEMR) over the Indian peninsula region and El Niño forcing. This turns out to be a critical science issue especially after the 2015 Chennai flood. The puzzle being while most El Niños favour good NE monsoon, some don’t. In fact some El Niño years witnessed deficit NE monsoon. Therefore two different cases (or classes) of El Niños are considered for analysis based on standardized NEMR index and Niño 3.4 index with case-1 being both Niño-3.4 and NEMR indices greater than +1 and case-2 being Niño-3.4 index greater than +1 and NEMR index less than −1. Composite analysis suggests that SST anomalies in the central and eastern Pacific are strong in both cases but large differences are noted in the spatial distribution of SST over the Indo-western Pacific region. This questions our understanding of NEMR as mirror image of El Niño conditions in the Pacific. It is noted that the favourable excess NEMR in case-1 is due to anomalous moisture transport from Bay of Bengal and equatorial Indian Ocean to southern peninsular India. Strong SST gradient between warm western Indian Ocean (and Bay of Bengal) and cool western Pacific induced strong easterly wind anomalies during NE monsoon season favour moisture transport towards the core NE monsoon region. Further anomalous moisture convergence and convection over the core NE monsoon region supported positive rainfall anomalies in case-1. While in case-2, weak SST gradients over the Indo-western Pacific and absence of local low level convergence over NE monsoon region are mainly responsible for deficit rainfall. The ocean dynamics in the Indian Ocean displayed large differences during case-1 and case-2, suggesting the key role of Rossby wave dynamics in the Indian Ocean on NE monsoon extremes. Apart from the large scale circulation differences the number of cyclonic systems land fall for case-1 and case-2 have also contributed for variations in NE monsoon rainfall extremes during El Niño years. This study indicates that despite having strong warming in the central and eastern Pacific, NE monsoon rainfall variations over the southern peninsular India is mostly determined by SST gradient over the Indo-western Pacific region and number of systems formation in the Bay of Bengal and their land fall. The paper concludes that though the favourable large scale circulation induced by Pacific is important in modulating the NE monsoon rainfall the local air sea interaction plays a key role in modulating or driving rainfall extremes associated with El Niño.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号