首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
Using 1958-2002 NCEPNCAR reanalysis data, we investigate stationary and transient planetary wave propagation and its role in wave-mean flow interaction which influences the state of the polar vortex (PV) in the stratosphere in Northern Hemisphere (NH) winter. This is done by analyzing the Eliassen-Palm (E-P) flux and its divergence. We find that the stationary and transient waves propagate upward and equatorward in NH winter, with stronger upward propagation of stationary waves from the troposphere to the stratosphere, and stronger equatorward propagation of transient waves from mid-latitudes to the subtropics in the troposphere. Stationary waves exhibit more upward propagation in the polar stratosphere during the weak polar vortex regime (WVR) than during the strong polar vortex regime (SVR). On the other hand, transient waves have more upward propagation during SVR than during WVR in the subpolar stratosphere, with a domain of low frequency waves. With different paths of upward propagation, both stationary and transient waves contribute to the maintenance of the observed stratospheric PV regimes in NH winter.  相似文献   

2.
We analyze the decadal variation of the stratosphere troposphere coupled system around the year 2000 by using the NCEP reanalysis-2 data.Specifically,the relationship between the Northern Hemisphere Annular Mode(NAM) and the tropospheric East Asian trough is investigated in order to find the effective stratospheric signals during cold air outbreaks in China.Statistical analyses and dynamic diagnoses both indicate that after 2000,increased stratospheric polar vortex disturbances occur and the NAM is mainly in negative phase.The tropospheric polar areas are directly affected by the polar vortex,and in the midlatitudes,the Ural blocking high and East Asian trough are more active,which lead to enhanced cold air activities in eastern and northern China.Further investigation reveals that under this circulation pattern,downward propagations of negative NAM index are closely related to the intensity variation of the East Asian trough.When negative NAM anomalies propagate down to the upper troposphere and reach a certain intensity(standardized NAM index less than 1),they result in apparent reinforcement of the East Asian trough,which reaches its maximum intensity about one week later.The northerly wind behind the trough transports cold air southward and eastward,and the range of influence and the intensity are closely associated with the trough location.Therefore,the NAM index can be used as a measure of the signals from the disturbed stratosphere to give some indication of cold air activities in China.  相似文献   

3.
The stratospheric polar vortex breakup (SPVB) is an important phenomenon closely related to the seasonal transition of stratospheric circulation. In this paper, 62-year NCEP/NCAR reanalysis data were employed to investigate the distinction between early and late SPVB. The results showed that the anomalous circulation signals extending from the stratosphere to the troposphere were reversed before and after early SPVB, while the stratospheric signals were consistent before and after the onset of late SPVB. Arctic Oscillation (AO) evolution during the life cycle of SPVB also demonstrated that the negative AO signal can propagate downward after early SPVB. Such downward AO signals could be identified in both geopotential height and temperature anomalies. After the AO signal reached the lower troposphere, it influenced the Aleutian Low and Siberian High in the troposphere, leading to a weak winter monsoon and large-scale warming at mid latitudes in Asia. Compared to early SPVB, downward propagation was not evident in late SPVB. The high-latitude tropospheric circulation in the Northern Hemisphere was affected by early SPVB, causing it to enter a summer circulation pattern earlier than in late SPVB years.  相似文献   

4.
The impact of La Ni?a on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Ni?a events considered. This study shows that this is mainly due to the decadal variation of La Ni?a's impact on the winter Arctic stratosphere since the late 1970 s. Specifically,during the period1951–78,the tropospheric La Ni?a teleconnection exhibits a typical negative Pacific–North America pattern,which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere,and leads to a significantly strengthened stratospheric polar vortex. In contrast,during 1979–2015,the La Ni?a teleconnection shifts eastwards,with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Ni?a teleconnection with climatological stationary waves seen in the earlier period reduces greatly,which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly,the stratospheric response shows a less disturbed stratospheric polar vortex in winter.  相似文献   

5.
6.
A linear,hemispheric and stationary spectral model with multilayers in the vertical was employed to simulate thevertical propagation of waves triggered by mountains.Results show that,in cooperation with the East Asia zonal meanflow,Tibetan Plateau can excite a strong wavenumber 1 perturbation in the stratosphere with its ridge and trough lo-cated over the Pacific and Atlantic Oceans respectively.On the other hand,the stratospheric wavenumber 1 perturbationcaused by the mechanical forcing of the Rocky Mountains in cooperation with the North America zonal mean flow isvery weak.Calculations from observational data of the vertical profile of critical wavenumber for vertically propagatingwaves imply that the tropospheric wavenumber 1 perturbation can hardly penetrate the North America tropopause up-wards,whereas it can freely propagate through the East Asia tropopause into the stratosphere.Two-dimensional E-Pcross-sections obtained from both observational data and simulated results also demonstrate that waves excited by theRocky Mountains are refracted towards low latitudes in the troposphere during their upward propagation:whereas,inaddition to the above mentioned equatorward leaning branch,the wavenumber 1 and 2 planetary waves excited by theTibetan Plateau possess another branch which is refracted to high latitudes during upward propagation and penetratesthe tropopause into the stratosphere.It is therefore concluded that the difference in the horizontal and vertical wavepropagations in the two hemispheres is a result of the different dynamical forcing induced by the two main mountains inthe Northern Hemisphere.  相似文献   

7.
The three-dimensional propagations of the forced stationary planetary waves in a realistic summer current, in which the vertical and horizontal wind shears are included, are discussed by using the refractive index squared of waves in a spherical coordinate system.The results show that there is no polar wave guide in stationary planetary wave propagations in summer. Thus, stationary planetary waves cannot propagate into the stratosphere. However, there are a wave guide pointing from the subtropics toward middle and high latitudes in the troposphere and another wave guide pointing from the lower troposphere at middle latitudes toward the upper troposphere near 30°oN in the forced stationary planetary wave propagations.A linearized, steady-state, quasi-geostrophic 34-level spherical coordinate model with Rayleigh friction and Newtonian cooling, horizontal kinematic thermal diffusivity is used to simulate the wave guides of three-dimensional propagations of stationary planetary waves in summer.  相似文献   

8.
Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.  相似文献   

9.
This paper reviews recent progress in understanding isentropic potential vorticity (PV) dynamics during interactions between the stratosphere and troposphere, including the spatial and temporal propagation of circulation anomalies associated with the winter polar vortex oscillation and the mechanisms of stratosphere- troposphere coupling in the global mass circulation framework. The origins and mechanisms of interannual variability in the stratospheric circulation are also reviewed. Particular attention is paid to the role of the Tibetan Plateau as a PV source (via its thermal forcing) in the global and East Asian atmospheric circulation. Diagnosis of meridional isentropic PV advection over tile Tibetan Plateau and East Asia indicates that the distributions of potential temperature and PV over the east flank of the Tibetan Plateau and East Asia favor a downward and southward isentropic transport of high PV from the stratosphere to the troposphere. This transport manifests the possible influence of the Tibetan Plateau on the dynamic coupling between the stratosphere and troposphere during summer, and may provide a new framework for understanding the climatic effects of the Tibetan Plateau.  相似文献   

10.
In this paper, we examine the performance of the 26-level version of the SAMIL/LASG GCM (R42/L26) in simulating the seasonal cycle and perpetual winter mean stratospheric circulation as well as its variability by comparing them with the NCEP/NCAR reanalysis. The results show that the model is capable of reproducing many key features of the climatology and seasonal variation of the stratospheric circulation despite that the model’s mean polar vortex is stronger and more zonally symmetric compared to the obse...  相似文献   

11.
The Northern Hemisphere stratospheric polar vortex is linked to surface weather. After Stratospheric Sudden Warmings in winter, the tropospheric circulation is often nudged towards the negative phase of the Northern Annular Mode (NAM) and the North Atlantic Oscillation (NAO). A strong stratospheric vortex is often associated with subsequent positive NAM/NAO conditions. For stratosphere?Ctroposphere associations to be useful for forecasting purposes it is crucial that changes to the stratospheric vortex can be understood and predicted. Recent studies have proposed that there exist tropospheric precursors to anomalous vortex events in the stratosphere and that these precursors may be understood by considering the relationship between stationary wave patterns and regional variability. Another important factor is the extent to which the inherent variability of the stratosphere in an atmospheric model influences its ability to simulate stratosphere?Ctroposphere links. Here we examine the lower stratosphere variability in 300-year pre-industrial control integrations from 13 coupled climate models. We show that robust precursors to stratospheric polar vortex anomalies are evident across the multi-model ensemble. The most significant tropospheric component of these precursors consists of a height anomaly dipole across northern Eurasia and large anomalies in upward stationary wave fluxes in the lower stratosphere over the continent. The strength of the stratospheric variability in the models was found to depend on the variability of the upward stationary wave fluxes and the amplitude of the stationary waves.  相似文献   

12.
We investigated the differences between stratospheric (S-type) and tropospheric (T-type) Arctic Oscillation (AO) events on the intraseasonal time scale, in terms of their influences on surface air temperature (SAT) over the Northern Hemisphere and the dynamic features associated with their spatial structures. S-type AO events showed a stratosphere-troposphere coupled structure, while T-type events exhibited a stratosphere-troposphere uncoupled structure. The annular SAT anomalies over the Northern Hemisphere were found to be associated with S-type AO events, whereas such an annular feature was substantially destructed in T-type AO events. The different horizontal structures in the troposphere of the two types could mainly be attributed to transient eddy feedback forcing. As for the vertically uncoupled structure of Ttype events, the underlying dynamical features that differentiate them from S-type events lie in the vertical propagation of zonally confined Rossby waves. In T-type events, the zonally confined Rossby wave packets can emanate from the significant height anomalies over Northeast Asia, where one vertical waveguide exists, and then propagate upward into the stratosphere. In contrast, such a vertical propagation was not evident for S-type events. The stratospheric anomalies associated with the upward injection of the zonally confined Rossby waves from the troposphere in T-type events can further induce the anomalous vertical propagation of planetary waves (PWs) through the interference between the climatological-mean PWs and anomalous PWs, leading to the final stratosphere-troposphere uncoupled structure of T-type events.  相似文献   

13.
北半球准定常行星波气候平均态的资料分析和数值模拟   总被引:1,自引:1,他引:1  
杨蕾  陈文  黄荣辉 《大气科学》2006,30(3):361-376
利用NCEP/NCAR再分析资料和大气环流模式(CCSR/NIES AGCM Ver 5.6),对北半球准定常行星波的气候平均态分布进行分析和模拟.再分析资料分析的结果表明:北半球冬季,准定常行星波沿两支波导向上传播,其中一支在对流层上层转向中低纬度传播,另外一支折向高纬度,通过极地波导上传到平流层.其中,1波和2波可以上传到平流层,因而其振幅分布除在中低纬的对流层上层出现一个次大值外,在高纬度平流层中上层会出现一个最大值,3波则主要限制在对流层,其振幅分布除在副热带对流层上层出现一个次大值外,最大值出现在中纬度对流层上层.北半球夏季,整个平流层为东风环流,极地波导不存在,行星波不能上传到平流层,在对流层活动也较弱,1波、2波、3波的传播情况大致相似,表现为在对流层上层由中纬度向赤道地区的传播.相应的振幅分布是,对1波和2波而言,最大值出现在中低纬对流层顶附近,同时在中高纬对流层上层出现一个次大值,而3波的振幅分布正好相反,最大值出现在中高纬对流层上层,次大值则在中低纬对流层顶附近.利用大气环流模式进行的数值模拟表明,模式可以比较好地模拟冬夏季准定常行星波的传播路径,但模拟的北半球冬季沿极地波导向平流层的传播明显偏弱,其结果是对1波、2波而言,高纬度平流层中上层的振幅最大值明显小于再分析资料的数值.文中还讨论了数值模拟与资料分析中行星波的差异可能对大气环流模拟的影响.  相似文献   

14.
涡动在南北半球平流层极涡崩溃过程中作用的比较   总被引:3,自引:1,他引:2  
魏科  陈文  黄荣辉 《大气科学》2008,32(2):206-219
比较了南北半球春季平流层极涡的崩溃过程以及涡动在此崩溃过程中的作用。极涡的崩溃时间以平流层极夜急流核区最后一次西风转换为东风的时间来确定。结果表明南北半球平流层极涡的崩溃过程有着共同的特点,涡动和非绝热加热过程都对极涡的崩溃起着重要的作用,在极涡崩溃前平流层行星尺度波动活动明显,极涡崩溃以后,这种波动活动便迅速减弱。其中从对流层上传的行星波决定着极涡的具体崩溃时间。两个半球的差别主要表现在南半球极涡崩溃过程一般始于平流层高层,然后逐渐下传,而北半球这种下传不是很明显。其次,北半球平流层极涡崩溃偏晚年,极涡的减弱有两次过程,第一次为快速变化过程,第二次变化比较缓慢,而南半球平流层极涡崩溃无论早晚年只有一次减弱过程。长期的变化趋势分析表明南北半球平流层极涡的崩溃时间逐渐推迟,特别是20世纪90年代中后期以来,这种推迟更加明显。进一步的研究还发现,伴随着平流层极涡的崩溃过程平流层和对流层存在强烈的动力耦合,南北半球极涡迅速减弱前,各自半球的环状模指数也由负指数增加为正指数,表明低层环流对于平流层极涡的崩溃起到重要的作用;同时极涡不同强度所对应的低层环状模指数也不同,这可能与不同强度平流层极涡对于上传的行星波的反射有关。  相似文献   

15.
沈熙  徐海明  胡景高 《气象科学》2017,37(6):718-726
本文采用1979—2014年NCEP/NCAR月平均再分析资料、CMAP和GPCP月平均降水资料,分析了北半球平流层极涡崩溃早晚的环流特征及其与南亚降水的关系。结果表明,北半球平流层极涡崩溃时间存在明显的年际变化特征。极涡崩溃偏早(偏晚)年,自3月开始异常信号从平流层向下传播,之后的4月,从平流层到对流层高层极区温度异常偏高(偏低),极涡异常偏弱(偏强),极夜急流异常偏弱(偏强)。结果还表明,5月南亚降水异常与平流层极涡崩溃时间的早晚存在显著相关,5月南亚降水异常与平流层极涡崩溃早晚年平流层异常信号的下传有关。当平流层极涡崩溃偏晚年,4月平流层极区表现为位势高度异常偏低,而中纬度则位势高度场异常偏高,并伴随位势高度异常场的向下传播,5月该位势高度异常场下传至阿拉伯海北部大陆上空对流层顶,形成有利于降水的环流场,导致南亚降水偏多。反之,则相反。  相似文献   

16.
北半球环状模波流相互作用动力学研究进展   总被引:1,自引:0,他引:1  
梁苏洁  赵南 《气象科技》2011,39(6):753-760
总结了国内外学者对于北半球环状模(NAM:Northern Hemisphere Annular Mode)及其活动中心形成原因的研究成果。主要从NAM的天气、气候影响,波流相互作用原理对NAM形成的解释,NAM在北太平洋、北大西洋和北极3个区域活动中心的天气尺度波和行星尺度波活动等方面论述。NAM在对流层的变化与天气尺度波有关,北太平洋和北大西洋两个活动中心是天气尺度波活跃的区域,其峰值区表现为风暴轴,其中北大西洋天气尺度波破碎过程会使得NAM指数急剧变化。NAM在平流层的变化和准定常行星波关系密切,冬季准定常行星波会上传并与高纬平流层纬向流发生相互作用,从而引起北极极涡发生改变。准定常行星波将NAM 3个活动中心有机联系起来:对流层准定常行星波的纬向传播会影响北太平洋风暴轴的位置,而风暴轴的变化会影响下游北大西洋波破碎过程,同时准定常行星波的上传可以影响极涡活动。  相似文献   

17.
Accurate seasonal forecasts rely on the presence of low frequency, predictable signals in the climate system which have a sufficiently well understood and significant impact on the atmospheric circulation. In the Northern European region, signals associated with seasonal scale variability such as ENSO, North Atlantic SST anomalies and the North Atlantic Oscillation have not yet proven sufficient to enable satisfactorily skilful dynamical seasonal forecasts. The winter-time circulations of the stratosphere and troposphere are highly coupled. It is therefore possible that additional seasonal forecasting skill may be gained by including a realistic stratosphere in models. In this study we assess the ability of five seasonal forecasting models to simulate the Northern Hemisphere extra-tropical winter-time stratospheric circulation. Our results show that all of the models have a polar night jet which is too weak and displaced southward compared to re-analysis data. It is shown that the models underestimate the number, magnitude and duration of periods of anomalous stratospheric circulation. Despite the poor representation of the general circulation of the stratosphere, the results indicate that there may be a detectable tropospheric response following anomalous circulation events in the stratosphere. However, the models fail to exhibit any predictability in their forecasts. These results highlight some of the deficiencies of current seasonal forecasting models with a poorly resolved stratosphere. The combination of these results with other recent studies which show a tropospheric response to stratospheric variability, demonstrates a real prospect for improving the skill of seasonal forecasts.  相似文献   

18.
Summary The variability of the horizontal circulation in the stratosphere and troposphere of the Northern Hemisphere (NH) is compared by using various approaches. Spatial degrees of freedom (dof) on different time scales were derived. Modes of variability were computed in geopotential height fields at the tropospheric and stratospheric pressure levels by applying multivariate statistical approaches. Features of the spatial and temporal variability of the winterly zonal wind were studied with the help of recurrence and persistence analyses. The geopotential height and zonally-averaged zonal wind at the 50-, 500- and 1000-hPa level are used to investigate the behavior of the horizontal circulation in the lower stratosphere, mid-troposphere and at the near surface level, respectively. It is illustrated that the features of the variability of the horizontal circulation are very similar in the mid-troposphere and at the near surface level. Due to the filtering of tropospheric disturbances by the stratospheric and upper tropospheric zonal mean flow, the variability of the stratospheric circulation exhibits less spatial complexity than the circulation at tropospheric pressure levels. There exist enormous differences in the number of degrees of freedom (or free variability modes) between both atmospheric layers. Results of the analyses clearly show that the concept of a zonally symmetric AO with a simple structure in the troposphere similar to the one in the stratosphere is not valid. It is concluded that the spatially filtered climate change signal can be detected earlier in the stratosphere than in the mid-troposphere or at the near surface level. Received June 28, 2000/Revised March 10, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号