首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
应用贵州84个气象台站50年(1961~2010年)观测资料,对大雾的时空分布,雾日的季节和月频率分布,雾日的年际间变化趋势等特征进行了分析表明,贵州大雾区主要有4个:西部大雾区主要分布在乌蒙山东侧;黔中大雾区主要在开阳和息烽县一带;黔东大雾区主要分布在苗岭山脉周围的县及铜仁的万山特区一带;黔西南大雾区以晴隆为中心。大雾大部分发生在冬季,其次是春季,其后是秋季,夏季发生频率最小。12月、1月和10月出现的雾日为最多;5~7月出现雾日的频率最小。出现大雾的时间主要在早晨,中午和傍晚发生大雾的频率较少。近50年大雾的年际间变化呈现增加趋势(通过0.05的信度检验),但本世纪以来呈现略微减少的趋势。  相似文献   

2.
陕西省高等级公路大雾的气候规律分析   总被引:4,自引:1,他引:4  
王川 《陕西气象》2002,(5):15-17
通过对陕西省17个代表站1991-2000年雾日的统计分析,总结出陕西省高等级公路大雾的气候规律,即遵循一定的季节性、地域性,且省内南北有明显差异。  相似文献   

3.
大雾对人民生活和交通有很大影响。本文对江西大面积大雾的气候概况和预报因子选取作一简单介绍。1大雾的气候概况1.1资料与大雾标准江西省有85个气象台站,在OS时区域图上,若有成片或基本成片的15个台站以上的现在天气记有雾,则定为一个大雾日,观测前一小时记为雾的也在统计之内。按照这一标准,我们统计了九年资料(1984年到1990年,1992年和1995年)1.2大雾日的月、季分布雾有明显的季节性变化,冬、春季最多,占83%,秋季很少,占17%,夏季没有。从月际变化来看,1~5月和10~12月是大雾的多发季节,九年中全省大雾日共165天,1…  相似文献   

4.
西安大雾气候特征及成因分析   总被引:2,自引:0,他引:2  
为揭示西安地区大雾气候特征及成因,分析西安地区1961-2005年大雾日数和对应的相对湿度、气温.结果表明:西安大雾最多地区是西安城区,秋冬季是大雾的高发季节;西安城区和户县大雾有明显的减少趋势,长安、蓝田大雾有明显的增加趋势,西安冬季大雾变化最明显;西安大雾具有明显的年代际变化;西安大雾变化与相对湿度和气温的变化有一定的相关性.  相似文献   

5.
我国大雾的时空分布特征及其发生的环流形势   总被引:21,自引:6,他引:15  
根据1971~2005年35年来714站大雾资料,统计了我国大雾的时空分布特征和环流形势.结果表明:年平均大雾最多的地区主要集中在四川盆地、重庆、云南南部、湖南和江南东部;雾日有明显的季节和月际变化,春、夏季雾的范围较小,秋、冬季雾的范围较大,内陆雾主要为(秋)冬季正态分布型,东北的雾夏季偏多,沿海雾春、夏季较多.雾通常开始于晚上20时(北京时间,下同)至次日早晨8时(以6~7时为最多),结束于8~12时,持续时间大多在1~10 h,持续3h的雾出现的频数最高.近35年雾日的线性趋势表明:江南、华南的雾日变化不明显,其余大部分地区的雾日都呈递减趋势,不同能见度的雾日在1985年前后基本上都呈相反的变化趋势,并且能见度越低的雾日变化越明显.主要考虑地面天气形势我国大范围大雾发生的环流形势可分为均压型和锋前型两大类型.  相似文献   

6.
四川省大雾时空分布特征研究   总被引:5,自引:0,他引:5  
采用1986~2007年四川省157个站22年大雾资料,初步统计分析了四川省大雾时空分布特征.结果表明:年平均雾日数最多的主要在四川盆地;雾日有明显的季节和月际变化,春、夏季年均雾日数较少,分布范围较小,秋、冬季年均雾日数较多,分布较广;雾大多开始于晚上20时~次日早上8时,结束于8~12时;其中持续0~3小时的大雾所占比例最大.近22年雾日年际变化趋势:约40%的观测站呈显著下降趋势,且分布集中在四川盆地,有少数的站点呈显著上升趋势.  相似文献   

7.
选取2006—2015年近10 a遵义市14个国家气象站观测资料,分析统计了大雾天气的时空分布,雾日的季节和月频率分布以及区域性大雾年际变化;并通过2015—2017年遵义市市区空气质量指数资料和能见度等地面气象资料,浅析其时间变化特征。结果表明:遵义大雾区主要有西部河谷大雾区、中部偏南大雾区、东部大雾区、北部雾区等4个。遵义市12月—次年1月出现的雾日最多,6—8月出现最少。近10 a区域性大雾天气次数随着年代的增加,总体呈现逐年减少的趋势。遵义秋冬季节空气质量状况不佳,空气中污染颗粒物较多,此时较高的相对湿度有助于形成能见度较差的天气。  相似文献   

8.
利用西安站1951—2011年常规气象观测资料,统计分析西安城区大雾气候特征。结果表明:西安城区雾日年际变化较大,平均22.2d/a,1971—1990年是大雾多发期,平均33d/a,大雾以1.7d/10a速率显著减少;大雾主要集中在9月—次年1月,11月为高发期,6月最少,不同等级的雾出现次数与其强度成反比,强浓雾4—8月鲜有发生,主要在10—12月;07:00前后生成的大雾最多,09:00—18:00生成的雾较少,13:00—15:00几乎无大雾;大雾天气主要风向为静风(C),约占66%,次风向为SSW、NE和SW,风速普遍较小,风速≤1m/s的雾次约占总次数的92%,风速较大的雾日,风向以SSW、SW居多;大雾天气相对湿度为80%~100%,相对湿度≥90%的雾日占比88%,夏季成雾湿度高于冬季,平均为95%。  相似文献   

9.
商丘雾变化的气候特征及天气分型   总被引:1,自引:1,他引:0  
依据商丘市8个站1961~2004年雾资料,分析了大雾天气的分布和气候变化特征。结果表明:商丘市雾的地理分布是西部睢县至宁陵一带为多雾区,南部柘城至夏邑一带为少雾区。宁陵出现大雾最多,睢县次之,柘城雾日最少。年际变化总体呈上升趋势。月际变化呈“V”型特征,秋冬季雾最多,夏季最少。雾的日变化一般在下半夜到清晨日出前后形成,05:00~06:00最易生成大雾,雾消时间一般在06:00~12:00,日出后07:00~08:00雾最容易消散。最长连雾日一般出现在11至次年1月,而1月出现最长连雾日的次数最多。雾的持续时间3 h以下的短雾最多,12~24 h的最少,没有超过24 h的长雾,连雾时间最长为23.3 h。年最多雾日,宁陵最多为120 d,柘城最少只有32 d,其余各站在40~77 d之间。商丘市雾发生时的地面天气形势主要有大陆高压型、冷锋前暖区型、均压场型和(低压)倒槽型。  相似文献   

10.
梅婵娟  张灿 《山东气象》2016,36(3):28-35
利用威海市6个基本气象站40a(1971—2010年)的气象观测资料,对威海沿海地区雾的时空分布特征、气候变化特征和雾过程持续时间等进行了统计分析,探讨了影响沿海雾生成的相关因子,其中还针对典型个例进行了统计分析。结果表明:威海地区雾呈现沿海大于内陆,东部大于西部地区的分布特点;其年代际变化特征表现并不一致,成山头和荣成的年雾日数呈明显的上升趋势,而威海,石岛和文登年雾日数也呈现增长趋势,但变化相对缓慢,只有乳山的年雾日数40a来呈现减小的趋势;除了文登和乳山,其他各站雾日数变化有着明显的季节变化特征,基本上呈春、夏季多、秋、冬季少的分布特点,各站大雾的日变化特征并不一致,其中乳山站日变化特征最为明显,其次是威海站,总体表现为夜间到早晨为大雾多发期,中午为大雾的低发期的特点,而成山头站除了夏季,日变化特征并不明显;各地雾过程出现的雾持续时间各不相同,威海的雾主要以<4h的短时雾为主,成山头雾持续性较长,而乳山站的雾基本在02—08时之间;从风向、风速上来看,大雾主要发生在偏南风的流场下,成山头雾主要出现在3~4级风的情况下,而威海站雾则主要在3级风以下;大雾发生时海温不能高于25℃,且海温在10~25℃之间,海温越接近气温时,大雾更易发生;大雾主要发生在高空脊和西北气流影响下,夏季在弱低槽,弱低涡和副高边缘时大雾也可能发生,地面形势主要为均压场和低压前部型,同时大雾前和大雾期间大气层结稳定,地面湿度大,温度露点差大雾时在0~1℃之间,轻雾时在1~5℃之间。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography.  相似文献   

15.
The variation of the East Asian jet stream(EAJS) associated with the Eurasian(EU) teleconnection pattern is investigated using 60-yr NCEP–NCAR daily reanalysis data over the period 1951–2010. The EAJS consists of three components: the polar front jet(PFJ); the plateau subtropical jet(PSJ); and the ocean subtropical jet(OSJ). Of these three jets over East Asia,the EU pattern exhibits a significant influence on the PFJ and OSJ. There is a simultaneous negative correlation between the EU pattern and the PFJ. A significant positive correlation is found between the EU pattern and the OSJ when the EU pattern leads the OSJ by about 5 days. There is no obvious correlation between the EU pattern and the PSJ. The positive EU phase is accompanied by a weakened and poleward-shifted PFJ, which coincides with an intensified OSJ. A possible mechanism for the variation of the EAJS during different EU phases is explored via analyzing the effects of 10-day high-and low-frequency eddy forcing. The zonal wind tendency due to high-frequency eddy forcing contributes to the simultaneous negative correlation between the EU pattern and the PFJ, as well as the northward/southward shift of the PFJ. High- and low-frequency eddy forcing are both responsible for the positive correlation between the EU pattern and the OSJ, but only high-frequency eddy forcing contributes to the lagged variation of the OSJ relative to the EU pattern. The negative correlation between the EU pattern and winter temperature and precipitation anomalies in China is maintained only when the PFJ and OSJ are out of phase with each other. Thus, the EAJS plays an important role in transmitting the EU signal to winter temperature and precipitation anomalies in China.  相似文献   

16.
By using the gauged rainfall in 160 stations within mainland China and the NCEP/NCAR reanalysis data, the impacts of anomalous SST in Kuroshio and its extension on precipitation in Northeast China were investigated. The results show that a difference in the meridional circulation such as the East Asia/Pacific teleconnection pattern(EAP)may be responsible for the difference in rainfall between 1998 and 2010. In comparison with 1998, the anomalous meridional circulation pattern in 2010 shifted northeastward, and then the western subtropical high, the mid-latitudinal trough and the northeastern Asia blocking high also shifted northeastward, causing intensified convergence of the cold and warm air masses at the southern region and thus more rainfall in the southwestern region and less in the northwestern region. In 1998, the anomalous cyclone, one component of the meridional pattern, located at the Songhuajiang-Nengjiang River basin, resulted in more rainfall in the majority of the area. The results of observation and the model show that the difference in SSTA in Kuroshio and its extension under the background of different El Ni觡o events is the key point:(1) The anomalous warmth moved westward from the mid-Pacific to the east of the Philippine Sea during the central event, which led the heat resources shifting to the northeast in 2010; subsequently, a shift occurred to the north of the anomalous ascent and decent, followed by a warm SSTA in the region of Kuroshio's extension in 2010 and Kuroshio in 1998.(2) The warm SSTA in the Kuroshio extension causing the Rossby wave activity flux strengthened in 2010, and then the westerly jet shifted northward and extended eastward. A warm SSTA in Kuroshio and cold SSTA in its extension in 1998 caused the westerly jet to shift southward and weaken. As a result,the anomalous anticyclone and cyclone shifted northward in 2010, and the blocking high also shifted northward.  相似文献   

17.
<p>Using the multielements similarity measurement method and 1950–C2017 NCEP/NCAR gridded daily reanalysis datasets, we analyzed season duration in China during 1950–C2016, and we defined the element with maximum absolute sensitivity as the key impact element at each point using the sensitivity analysis method. The decadal change of season duration and its key impact element before and after 1980 were studied. The results indicated obvious meridional and zonal differences in the distribution of season duration for the 67-year average, and that the key impact element has the same distribution characteristics as season duration. In addition, complementary relationships were found between the durations of spring and summer, autumn and winter, and the cold and warm seasons. Of those, the complementary relationship between the durations of spring and summer was strongest and the regions of complementarity were numerous. The complementary regions of autumn and winter durations were found mainly in western China. In the cold and warm seasons, the complementary regions were widespread and the complementary relationship was generally weak. Comparison of the periods before and after 1980 revealed an east–Cwest difference in the interdecadal variation of season duration. Interdecadal variation in spring and summer was found concentrated in northern and western regions, while that in autumn and winter was concentrated in the western region. Areas of significant interdecadal variation of the key elements were found concentrated in northern and western regions, corresponding well with the areas of significant interdecadal variation of season duration.</p>  相似文献   

18.
Understanding potential future influence of environmental, economic, and social drivers on land-use and sustainability is critical for guiding strategic decisions that can help nations adapt to change, anticipate opportunities, and cope with surprises. Using the Land-Use Trade-Offs (LUTO) model, we undertook a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia’s agricultural land from 2013–2050, under interacting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land-uses and assessed the sustainability of economic returns and ecosystem services at high spatial (1.1 km grid cells) and temporal (annual) resolution. We found substantial potential for land-use transition from agriculture to carbon plantings, environmental plantings, and biofuels cropping under certain scenarios, with impacts on the sustainability of economic returns and ecosystem services including food/fibre production, emissions abatement, water resource use, biodiversity services, and energy production. However, the type, magnitude, timing, and location of land-use responses and their impacts were highly dependent on scenario parameter assumptions including global outlook and emissions abatement effort, domestic land-use policy settings, land-use change adoption behaviour, productivity growth, and capacity constraints. With strong global abatement incentives complemented by biodiversity-focussed domestic land-use policy, land-use responses can substantially increase and diversify economic returns to land and produce a much wider range of ecosystem services such as emissions abatement, biodiversity, and energy, without major impacts on agricultural production. However, better governance is needed for managing potentially significant water resource impacts. The results have wide-ranging implications for land-use and sustainability policy and governance at global and domestic scales and can inform strategic thinking and decision-making about land-use and sustainability in Australia. A comprehensive and freely available 26 GB data pack (http://doi.org/10.4225/08/5604A2E8A00CC) provides a unique resource for further research. As similarly nuanced transformational change is also possible elsewhere, our template for comprehensive, integrated, quantitative, and high resolution scenario analysis can support other nations in strategic thinking and decision-making to prepare for an uncertain future.  相似文献   

19.
基于最新的GTAP8(Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

20.
碳交易政策的经济影响:以广东省为例   总被引:1,自引:0,他引:1  
通过构建广东省两区域动态模型,对广东省碳交易及其他政策措施进行定量评估,分析实施可调控总量的碳交易政策机制对广东省及参与交易部门的经济影响。研究结果表明,按照减排情景到2015年广东完成19.5%的碳强度下降目标,相比基准情景,GDP将减少0.7%;按照强减排情景到2015年将完成20.5%的碳强度下降目标,相比基准情景GDP将减少0.9%;如果在强减排情景的基础上实施碳交易政策,GDP相对基准情景减少0.8%,到2015年实施碳交易政策可减少GDP损失约90亿元,说明广东建立碳排放权交易机制能够发挥支持经济发展和节能减碳双赢的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号