首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
The contribution of tropical cyclones(TCs)to the East Asia–Pacific(EAP)teleconnection pattern during summer was investigated using the best track data of the Joint Typhoon Warning Center and NCEP-2 reanalysis datasets from 1979 to2018.The results showed that the TCs over the western North Pacific(WNP)correspond to a strengthened EAP pattern:During the summers of strong convection over the tropical WNP,TC days correspond to a stronger cyclonic circulation anomaly over the WNP in the lower troposphere,an enhanced seesaw pattern of negative and positive geopotential height anomalies over the subtropical WNP and midlatitude East Asia in the middle troposphere,and a more northward shift of the East Asian westerly jet in the upper troposphere.Further analyses indicated that two types of TCs with distinctly different tracks,i.e.,westward-moving TCs and northward-moving TCs,both favor the EAP pattern.The present results imply that TCs over the WNP,as extreme weather,can contribute significantly to summer-mean climate anomalies over the WNP and East Asia.  相似文献   

2.
The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region.  相似文献   

3.
In summer 2018, a total of 18 tropical cyclones(TCs) formed in the western North Pacific(WNP) and South China Sea(SCS), among which 8 TCs landed in China, ranking respectively the second and the first highest since 1951.Most of these TCs travelled northwest to northward, bringing in heavy rainfall and strong winds in eastern China and Japan. The present study investigates the impacts of decaying La Ni?a and intraseasonal oscillation(ISO) on the extremely active TCs over the WNP and SCS in summer 2018 by use of correlation and composite analyses. It is found that the La Ni?a episode from October 2017 to March 2018 led to above-normal sea surface temperature(SST) over central–western Pacific, lower sea level pressure and 500-hPa geopotential height over WNP, and abnormally strong convective activities over the western Pacific in summer 2018. These preceding oceanic thermal conditions and their effects on circulation anomalies are favorable to TC genesis in summer. Detailed examination reveals that the monsoon trough was located further north and east, inducing more TCs in northern and eastern WNP; and the more eastward WNP subtropical high as well as the significant wave train with a "-+-+" height anomaly pattern over the midlatitude Eurasia–North Pacific region facilitated the northwest to northward TC tracks. Further analyses reveal that two successively active periods of Madden–Julian Oscillation(MJO) occurred in summer 2018 and the boreal summer intraseasonal oscillation(BSISO) was also active over WNP, propagating northward significantly, corresponding to the more northward TC tracks. The MJO was stagnant over the Maritime Continent to western Pacific,leading to notably enhanced convection in the lower troposphere and divergence in the upper troposphere, conducive to TC occurrences. In a word, the extremely active TC activities over the WNP and SCS in summer 2018 are closely linked with the decaying La Ni?a, and the MJO and BSISO; their joint effects result in increased TC occurrences and the TC tracks being shifted more northwest to northward than normal.  相似文献   

4.
The characteristics of 200 hPa divergent wind and velocity potential have been analysed for four kinds of tropical cyclone tracks having impact on the SOuth China Sea.It is found that the difference of monsoon circulation in 200 hPa divergence wind field may affect the medium-range movement characteristics of tropical cyclone tracks.Corresponding to the west Pacific subtropical high,the orientation of 200 hPa secondary convergence line and its extension to the west may indicate the variability of track types.The direction of tropical cyclone movement is 2 longitudes west of and parallel to the 200 hPa secondary divergence line.  相似文献   

5.
Interannual variability of landfalling tropical cyclones(TCs) in China during 1960-2010 is investigated.By using the method of partial least squares regression(PLS-regression),canonical ENSO and ENSO Modoki are identified to be the factors that contribute to the interannual variability of landfalling TCs.El Ni o Modoki years are associated with a greater-than-average frequency of landfalling TCs in China,but reversed in canonical El Ni o years.Significant difference in genesis locations of landfalling TCs in China for the two kinds of El Ni o phases occurs dominantly in the northern tropical western North Pacific(WNP).The patterns of low-level circulation anomalies and outgoing longwave radiation(OLR) anomalies associated with landfalling TC genesis with different types of El Ni o phases are examined.During canonical El Ni o years,a broad zonal band of positive OLR anomalies dominates the tropical WNP,while the circulation anomalies exhibit a meridionally symmetrical dipole pattern with an anticyclonic anomaly in the subtropics and a cyclonic anomaly near the tropics.In El Ni o Modoki years,a vast region of negative OLR anomalies,roughly to the south of 25°N with a strong large-scale cyclonic anomaly over the tropical WNP,provides a more favorable condition for landfalling TC genesis compared to its counterpart during canonical El Ni o years.For more landfalling TCs formed in the northern tropical WNP in El Ni o Modoki years,there are more TCs making landfall on the northern coast of China in El Ni o Modoki years than in canonical El Ni o years.The number of landfalling TCs is slightly above normal in canonical La Ni a years.Enhanced convection is found in the South China Sea(SCS) and the west of the tropical WNP,which results in landfalling TCs forming more westward in canonical La Ni a years.During La Ni a Modoki years,the landfalling TC frequency are below normal,owing to an unfavorable condition for TC genesis persisting in a broad zonal band from 5°N to 25°N.Since the western North Pacific subtropical high(WNPSH) in La Ni a Modoki years is located in the westernmost region,TCs mainly make landfall on the south coast of China.  相似文献   

6.
Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice and sea surface temperature (HadISST) datasets, the authors have examined the behaviors of tropical cyclones (TCs) in the western north Pacific (WNP) in boreal winter (November-December-January-February). The results demonstrate that the occurrences of wintertime TCs, including super typhoons, have decreased over the 58 years. More TCs are found to move westward than northeastward, and the annual total number of parabolic-track-type TCs is found to be decreasing. It is shown that negative sea surface temperature anomalies (SSTAs) related to La Nifia events in the equatorial central Pacific facilitate more TC genesis in the WNP region. Large-scale anomalous cyclonic circulations in the tropical WNP in the lower troposphere are observed to be favorable for cyclogenesis in this area. On the contrary, the positive SSTAs and anomalous anticyclonic circulations that related to E1 Nifio events responsible for fewer TC genesis. Under the background of global warming, the western Pacific subtropical high tends to intensify and to expand more westward in the WNP, and the SSTAs display an increasing trend in the equatorial eastern-central Pacific. These climate trends of both atmospheric circulation and SSTAs affect wintertime TCs, inducing fewer TC occurrences and causing more TCs to move westward.  相似文献   

7.
This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during the last four decades,primarily due to the shift of landfalling TC tracks,with the decreasing/increasing proportion of westward/northward TC tracks.In particular,the northward shift of the landfalling TCs was not related to their formation locations,which have not markedly changed,whereas"no-landed"TCs have significantly shifted northward.TC movement was significantly and positively correlated to the zonal component of the steering flow,while the correlation between TC movement and the meridional component of the steering flow was relatively unobvious.The westward steering flow in the tropical central Pacific that occurred around the formation and early development of the westward TCs was significantly weakened,which was unfavorable for their westward movement,thereby,causing the higher proportions of northward moving tracks.This weakened westward flow was related to the northward shift of the subtropical high ridge,which was caused by significant weakening of the southern part of the subtropical high.The vertical wind shear,sea surface temperature,and convective available potential energy also showed that the northern region of the western North Pacific became more favorable for TC development,whereas the upper divergence,low-layer relative vorticity,and accumulated water vapor content were not obviously related to the northward shift of TCs.  相似文献   

8.
Numerical experiments are carried out using a global spectral model to study the role of an ideal heating source over the western tropical Pacific region in a medium-term weather process that marks the western advancement of the subtropical high in mid-June 1979. The result has indicated that the effect of the ideal heating source is evident in about 4 days after the inclusion in the high and the circulation at mid-and high-latitudes over the eastern part of China; the disturbance produced over the tropical ocean first transfers towards the northwest along the easterly flow on the southern edge of the subtropical high and then divides into two branches as it moves over the westerly over the mid-latitude area, one continuing the journey northwestward and the other turning to the northeast by east, resulting in changes in the subtropical high and the westerly through combined action.  相似文献   

9.
Although it is well known that the tropical easterly jet(TEJ)has a significant impact on summer weather and climate over India and Africa,whether the TEJ exerts an important impact on tropical cyclone(TC)activity over the western North Pacific(WNP)remains unknown.In this study,we examined the impact of the TEJ on the interannual variability of TC genesis frequency over the WNP in the TC season(June-September)during 1980-2020.The results show a significant positive correlation between TC genesis frequency over the WNP and the jet intensity in the entrance region of the TEJ over the tropical western Pacific(in brief WP_TEJ),with a correlation coefficient as high as 0.66.The intensified WP_TEJ results in strong ageostrophic northerly winds in the entrance region and thus upper-level divergence to the north of the jet axis over the main TC genesis region in the WNP.This would lead to an increase in upward motion in the troposphere with enhanced low-level convergence,which are the most important factors to the increases in low-level vorticity,mid-level humidity and low-level eddy kinetic energy,and the decreases in sea level pressure and vertical wind shear in the region.All these changes are favorable for TC genesis over the WNP and vice versa.Further analyses indicate that the interannual variability of the WP_TEJ intensity is likely to be linked to the local diabatic heating over the Indian Ocean-western Pacific and the central Pacific El Ni?o-Southern Oscillation.  相似文献   

10.
Based on analyses of the relationship between Pacific Meridional Mode (PMM) and number of tropical cyclones (TCs) activity over the western North Pacific, the impacts of the PMM on Tc activity over the western North Pacific are studied using numerical simulations with an Atmospheric General Circulation Model (CAM3) of National Center for Atmospheric Research (of USA). The result shows that the PMM has impacts on the large-scale generating environment of TCs, thus affecting their number and strength. The numerical simulations using the NCAR CAM3 indicate that with the inclusion of the forcing from sea surface temperature (SST) of the PMM, there appears a decreased magnitude of the vertical zonal wind shear, large proportion of relative humidity, anomalous westerly wind at low levels and anomalous easterly wind at high levels, in association with anomalous cyclonic circulation at low levels and anomalous anti-cyclonic circulation at high levels over the tropical western Pacific. Thus, the PMM provides favorable environment for the typhoon genesis. In the sensitivity experiment, TCs have larger strength, lower SST at the center, stronger tangential wind at 850 hPa and intensified warm cores at high levels. In this paper, the simulation results are similar to that in the data analyses, which reveals the important impact of the PMM on TC activity over the western North Pacific.  相似文献   

11.
The influence of the interannual variation of cross-equatorial flow(CEF) on tropical cyclogenesis over the western North Pacific(WNP) is examined in this paper by using the tropical cyclone(TC) best track data from the Joint Typhoon Warning Center and the JRA-25 reanalysis dataset. The results showed that the number of TCs forming to the east of 140°E over the southeastern part of the western North Pacific(WNP) is in highly positive correlation with the variation of the CEF near 125° E and 150° E, i.e., the number of tropical cyclogeneses increases when the cross-equatorial flows are strong. Composite analyses showed that during the years of strong CEF, the variations of OLR, vertical wind shear between 200-850 h Pa, 850 h Pa relative vorticity and 200 h Pa divergence are favorable for tropical cyclogenesis to the east of 140°E over the tropical WNP, and vice versa. Moreover, it is also discussed from the view of barotropic energy conversion that during the years of strong CEF, an eastward-extended monsoon trough leads to the rapid growth of eddy kinetic energy over the eastern part of WNP, which is favorable for tropical cyclogenesis;but during the years of weak CEF, the monsoon trough is located westward in the western part of the WNP, consistent with the growth area of eddy kinetic energy. As a result, there are fewer TC geneses over the eastern part of WNP.Besides, the abrupt strengthening of a close-by CEF 2-4 days before tropical cyclogenesis may be the one of its triggers.  相似文献   

12.
利用美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,简称NO-An)的逐日对外长波辐射(outgoing longwave radiation,简称OLR)场资料,欧洲中期天气预报中心(European Center for Medium—Range Weather Forecasting,简称ECMWF)逐日风场(850hPa)资料,以及美国联合台风预警中心(Joint Typhoon Warning Center,简称JTWC)的热带气旋(tropicalcy—clone,简称TC)数据,参考Wheeler and Hendon(2004)提出的季节内振荡(Madden—Julianoscilla.tion,简称MJO)指数,通过多元EOF方法定义热带准双周振荡(quasi—biweekly oscillation,简称QBW)指数,诊断分析了西北太平洋地区QBW不同位相对于TC路径的影响。结果表明,TC主要生成在QSW对流湿位相中,集中位置随QBW向西北的传播而向西北移动。在QSW位相phasel中,南海上空盛行QBW反气旋性环流,西太副高西伸,其西南侧偏东南气流受QBW反气旋性环流东北侧气流抑制,生成在副高南侧的TC首先在副高南侧偏东气流的引导下移动至近海,在西南季风以及副高西侧偏南气流作用下顺时针北折,因此在140°E以西转折类路径的TC比例最高;而在phase3中,西太副高偏东,南海上空盛行QBW气旋性环流,西太副高西南侧气流强度受QBW气旋东北侧气流影响增强,季风槽偏东,140°E以东转折类的TC比例最高。本文还对TC个例中的QBW流场形势进行了分析,发现当QBW气旋或反气旋环流中心同TC中心一致时,热带气旋路径会发生突然的右折。  相似文献   

13.
利用中国气象局热带气旋(TC)资料、NCEP/NCAR 再分析资料和美国 NOAA 向外长波辐射(OLR)等资料,分析了2010年西北太平洋(WNP)及南海(SCS)热带气旋活动异常的可能成因,讨论了同期大气环流配置和海温外强迫对TC生成和登陆的动力和热力条件的影响。结果表明,2010年生成TC频数明显偏少,生成源地显著偏西,而登陆TC频数与常年持平。导致7~10月TC频数明显偏少的大尺度环境场特征为:副热带高压较常年异常偏强、西伸脊点偏西,季风槽位置异常偏西,弱垂直风切变带位置也较常年偏西且范围偏小,南亚高压异常偏强,贝加尔湖附近对流层低高层均为反气旋距平环流,这些关键环流因子的特征和配置都不利于 TC 在WNP的东部生成。影响TC活动的外强迫场特征为:2010年热带太平洋经历了El Ni?o事件于春末夏初消亡、La Ni?a事件于7月形成的转换;7~10月,WNP海表温度维持正距平,140°E以东为负距平且对流活动受到抑制;暖池次表层海温异常偏暖,对应上空850 hPa为东风距平,有利于季风槽偏西和TC在WNP的西北侧海域生成。WNP海表温度和暖池次表层海温的特征是2010年TC生成频数偏少、生成源地异常偏西的重要外强迫信号。有利于7~10月热带气旋西行和登陆的500 hPa风场特征为:北太平洋为反气旋环流距平,其南侧为东风异常,该东风异常南缘可到25°N,并向西扩展至中国大陆地区;南海和西北太平洋地区15°N以南的低纬也为东风异常;在这样的风场分布型下,TC容易受偏东气流引导西行并登陆我国沿海地区。这是2010年生成TC偏少但登陆TC并不少的重要环流条件。  相似文献   

14.
Based on the satellite data from the National Oceanic and Atmospheric Administration and the NCEP/NCAR reanalysis data, the variation of the intensity of convection over the Intertropical Convergence Zone(ITCZ) in summer and its impacts on tropical cyclones are studied. In this paper, an intensity index of the ITCZ is proposed according to Outgoing Longwave Radiation(OLR) in the region of(5°–20°N, 120°–150°E) in the western North Pacific(WNP). Then strong and weak ITCZ years are classified and different variables during the strong/weak ITCZ years are analyzed. The composite results show that the ITCZ anomaly is connected to the general atmospheric circulation and SST distribution. In the strong ITCZ years, the subtropical anticyclone weakens and shifts northward. Besides, there is salient cyclonic anomaly at the low level and anticyclonic anomaly at the high level. SST patterns in the preceding winter resemble to those of La Nina. It could persist into the succeeding summer. However, it is opposite in the weak ITCZ years. The impact of the ITCZ anomaly on the tropical cyclone(TC) formation and track is also discussed. There are more TCs over the WNP(5°–20°N, 120°–150°E) in the strong ITCZ years and there is a significant increase in the northward recurving TCs. In the weak ITCZ years, fewer TCs occur and the frequency of the northwestward track is higher.  相似文献   

15.
应用NOAA气候预测中心提供的热带大气季节内振荡(MJO)客观业务指数及中国气象局上海台风研究所提供的西北太平洋热带气旋(TC)最佳路径资料集,定量统计榆验了MJO对夏季西北太平洋TC活动的调制作用.结果表明:MJO对TC的生成、强度、路径和登陆活动都有显著的调节作用.当高空辐合中心位于120°E~160°E(MJO位相3~5)时,西北太平洋TC生成偏少,且生成位置偏北;而当高空辐合中心位于10°W~70°E(MJO位相8~10)时,西北太平洋TC生成偏多,且生成位置偏南;随着TC强度加强,能达到显著调节作用的MJO位相逐渐减少,当高空辐合辐散中心位于70°E(MJO位相10)时,对TC强度调制最显著.在路径调节方面,MJO位相1~4和10时,TC活跃于菲律宾以东的西北太平洋上,主要路径为西北偏北行,可能登陆华东、华北;而位相5~8时,TC主要活跃在菲律宾附近及以西到南海,以偏西行路径为主,可能登陆华南.MJO对登陆华南TC也有显著影响.该定量统计检验结果可为TC活动季节内预测提供依据.  相似文献   

16.
以2018年盛夏一次典型的热带气旋群发(Multiple Tropical Cyclogenesis,MTC)事件为例,分析了多尺度环流(包括大尺度环流、季节内振荡及热带波动等)对MTC的影响,并探讨了MTC群发期和间歇期整层大气垂直扰动场的差异。结果表明:1)2018年盛夏西北太平洋经历了一次持续时间长达16 d有8个TC相继生成的MTC群发期和紧接着长达19 d仅1个TC生成的MTC间歇期;2)MTC群发期越赤道气流增强,季风槽加强东伸,南海和西北太平洋上空低层辐合高层辐散的环流配置有利于TC生成;3)夏季东亚-西北太平洋季节内振荡北传对MTC次季节变化具有显著的调制作用,MTC群发期(间歇期)南海和西北太平洋正好处于一次较强的季节内振荡(Intraeasonal Oscillation,ISO)北传湿(干)位相上;4)群发期内8个TC的生成皆与热带波动有关,其中5个同时受两种热带波动的影响,热带波动通过改变局地热动力状况为TC生成提供触发条件;5)多尺度环流的共同影响最终导致MTC群发期和间歇期在温压扰动场配置、垂直运动扰动和比湿扰动的垂直结构特征上表现出显著的差异,扰动分析法的应用为MTC生成的延伸期预报提供了一个新的思路。  相似文献   

17.
The relationship between global warming and the variation in tropical cyclone (TC) genesis frequency is analyzed using the data of the Tropical Cyclone Year Book by the China Meteorological Administration and the National Centers for Environmental Prediction (NCEP) reanalysis data from 1949 to 2007. The observational results indicate that the average sea surface temperature (SST) in the Intertropical Convergence Zone (ITCZ) region (10°N – 20°N, 100°E – 140°E) increases by 0.6°C against the background of global warming, while the frequency of tropical cyclone geneses in this region decreases significantly. Generally, the rise of SSTs is favorable for the genesis of tropical cyclones, but it is now shown to be contrary to the normal effect. Most of the tropical cyclones in the western North Pacific (WNP) are generated in the ITCZ. This is quite different from the case in the Atlantic basin in which the tropical cyclones are mostly generated from the easterly wave. Our research results demonstrate that the ITCZ has a weakening trend in strength, and it has moved much more equatorward in the past 40 years; both are disadvantageous to the formation of tropical cyclones. Furthermore, our study also found that the ridge of the subtropical high tends to shift slightly equatorward, which is another adverse mechanism for the formation of tropical cyclones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号