首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
2.
关于棉田感热通量和潜热通量的几种计算方法   总被引:8,自引:1,他引:7  
吴洪颜  申双和 《气象科学》2000,20(4):537-542
根据棉田的实测资料,选用四种常用的计算感染热通量的潜热通量的方法进行分析,发现空气动力学方法I和伯温比-能量平衡法的计算结果较一致,梯度扩散法略小,而布德科方法计算的潜热通量偏高、感热通量过低,因此得出结论:在计算棉花等作物的冠层通量时,选用空气动力学方法I最合适,其次是梯度扩散法。  相似文献   

3.
南海夏季风爆发的气候特征   总被引:8,自引:4,他引:8  
利用TOGA-COARE强化期“实验3”号科学考究船所取得的表面气象的探空资料,对考察期间的热通量进行详尽的分析和计算,特别是对发生在IOP期间的两次西风爆发过程中西太平洋热带海域热通量的特征进行了重点分析,并讨论了它们与大尺度环流及其中高纬度环流的关系。  相似文献   

4.
南疆沙漠腹地大气边界层湍流通量特征的观测研究   总被引:4,自引:0,他引:4  
利用新疆塔中站2006年4月、8月的三维风速。温度和水汽脉动资料,运用涡旋相关法计算得到了春、夏季塔中10m高度的动量、感热和潜热通量。结果表明,塔中地区地表热量输送以感热输送为主。春季每天的最大感热通量变化范围为120—320W·m^-2,月平均值为220W·m^-2;夏季最大感热通量的变化范围为140—340W·m^-2,月平均值为230W·m^-2。感热通量值在夜间为负,白天为正,符号的改变出现在日出、日落前后。夏季潜热通量最大值一般为20—60W·m^-2,平均值为27W·m^-2,潜热通量比感热通量小一个量级。春季动量通量的平均值为-0.063W·m^-2,夏季动量通量的平均值为-0.091W·m^-2。日变化规律比较明显,日出后,动量向下传输增大,在09-10时(地方时)出现一个最大值,随后动量向下传输并开始减小。  相似文献   

5.
6.
集成生物圈模型(IBIS)是目前最复杂的基于动态植被模型的陆面生物物理模型之一。通过应用该模型对国际协调强化观测计划(CEOP)半干旱区基准站之一的吉林通榆观测站(44°25′N,122°52′E)草地和农田生态系统2003年全年的CO2和水、热通量变化进行模拟,并将结果与涡度相关法测定的观测值进行了对比分析,以检验IBIS模型在半干旱区的模拟能力。对比结果表明:除CO2通量模拟结果不够理想外,IBIS模型较好地模拟了通榆观测站的感热通量和潜热通量。模拟与观测比较的相关系数均通过了0.05以上显著性水平的信度检验。总体上看,模型对农田生态系统模拟的偏差小于对退化草地的模拟。  相似文献   

7.
应用通量方差法估算戈壁绿洲下垫面湍流通量的研究   总被引:3,自引:0,他引:3  
王少影  张宇  吕世华 《大气科学》2010,34(6):1214-1222
利用“绿洲系统能量与水分循环过程观测试验” 2005年绿洲、戈壁点的观测资料, 分析与讨论了温度、水汽的归一化标准差随稳定度变化的通量方差关系, 应用通量方差法对感热、 潜热通量进行了计算, 并同涡动相关系统的观测结果进行了比较。不稳定条件下, 戈壁点温度归一化标准差随稳定度变化的通量方差关系优于下垫面非均匀性更强的绿洲点, 绿洲点水汽的归一化标准差随稳定度变化的通量方差关系较温度量表现得更好。对同一站点, 归一化温度标准差的通量方差关系并不总是优于水汽的通量方差关系, 其取决于该站点的温度以及水汽的源汇分布情况; 通量方差法对两个站点的感热、 潜热通量均有较好的再现, 但戈壁点感热通量的计算效果优于非均匀性更强的绿洲点。应用通量方差法对潜热通量计算时若采用直接观测的感热通量, 则潜热通量的计算效果具有一定程度的改善。  相似文献   

8.
西北地区一次沙尘暴过程的地表热通量特征   总被引:1,自引:1,他引:0  
吕萍 《干旱气象》2009,27(3):250-253
利用NCEP日平均全球再分析网格点资料,对我国西北地区晴天日与沙尘暴日地表感热通量及潜热通量的差异进行了对比分析.结果表明:沙尘暴爆发前和爆发时,地表感热通量迅速增大,潜热通量急剧减小,地面空气处于一种干热状态,为一热源区,有能量的散失.  相似文献   

9.
SiB3对不同下垫面的模拟试验与验证   总被引:3,自引:1,他引:2  
首先介绍简单生物圈模式版本3(Simple Biosphere Model 3,SiB3)相比SiB2的改进之处以及相应的参数化方案。为了检验SiB3模式能否模拟不同下垫面的地气之间水分和能量交换,本文在全球选择3个代表高、中、低纬度的典型实验站点(青藏高原安多站点、亚马逊流域的Km34站点和美国中西部的WLEF站点),利用SiB3进行模拟分析和实验验证。研究结果表明,SiB3能够较好地模拟出不同下垫面的地表感热通量、潜热通量和净辐射通量随时间的变化率以及变化趋势,模式模拟值和测量值的相关系数达到080左右。但与实测相比,SiB3模拟的感热通量值仍偏高。在安多站点,模式模拟的地表土壤水分比较干燥,且模拟的地表温度较测量值偏高。  相似文献   

10.
利用2013年7月1日—2014年6月30日鄱阳湖东岸70 m铁塔的涡动相关观测资料,统计分析了风、温度、通量足迹的分布,重点分析了湍流通量的变化及其影响因素,结果表明:1)鄱阳湖地区夏季主要以南风、西南偏南风和东南偏南风为主,冬季风向多变,主要以西北风、西北偏北风等偏北风为主.秋季风速较强,春季次之,夏季最小.通量足迹在南、北方向密集,在西南和东北方向稀疏.2)动量通量表现为夏、秋季较大,冬、春季较小.感热通量表现为秋季最大,春季次之,夏季最小;秋季整体的变化幅度都较大,夏季整体较小.潜热通量夏季最大,冬季最小;潜热通量夏季整体的变化幅度较大,冬季整体较小.3)随着下垫面粗糙度的增大,摩擦速度和动量通量显著增大.潜热通量与水的相变密切相关,来自湖面的潜热通量较大,而来自陆地的较小;感热通量与大气稳定度有关,在稳定状态时为负,在不稳定状态感热通量显著增大.  相似文献   

11.
利用陕、甘、宁、青、新五省(区)90个测站,1960~1990年历年夏季月平均气温,采用主成分分析、旋转主成分分析和全球大气环流模式,对中国西北夏季气温变化的时空异常特征及其对青藏高原地面感热通量强弱变化的响应进行了诊断分析和数值试验。结果表明:中国西北地区气温变化在空间上具有较好的一致性,但由于地形和下垫面的影响,夏季气温异常主要表现为6种气候类型(区),即青海高原区、河套区、北疆区、渭水流域区、南疆西部区、东疆-河西走廊区。50年代以来气温演变的主要特点是除青海高原和北疆外的西北大部分地方夏季由暖变冷。当北半球500hPa高度距平场呈欧亚型振荡,则有利于中国西北大范围气温偏高(低)。青藏高原地面感热通量的异常增强,可引起西北夏季西部偏暖,东部偏冷。  相似文献   

12.
6种地表热通量资料在伊朗—青藏高原地区的对比分析   总被引:1,自引:1,他引:1  
刘超  刘屹岷  刘伯奇 《气象科学》2015,35(4):398-404
基于JRA25、ERA40、ERA-Interim、NCEP1、NCEP2和20CR,对比了不同资料中气候平均(1979—2008年)伊朗—青藏高原感热通量和波文比的季节演变,以及夏季高原感热的年际变率和线性趋势。6套资料均表明,由春到夏亚洲大地形区域地表热状况的季节演变存在明显差异,青藏高原东南部低空气旋生成,一方面增多了局地降水,减弱了地表西风,造成潜热加强,感热减弱,波文比减小;另一方面加强了伊朗高原的东北风,抑制了当地降水,令感热加强,波文比增加,构成了青藏—伊朗高原感热通量季节演变的纬向非对称分布。虽然近30 a来伊朗高原(青藏高原)夏季感热线性增加(减小)的趋势一致,但不同资料所反映的伊朗—青藏高原夏季感热通量的年际变化差别明显。  相似文献   

13.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

14.
基于NCAR大气模式CAM3.1模式,设计了有、无土壤湿度年际异常两组试验对中国区域近40a(1961-2000年)气候进行了模拟。从气候态和年际变率的角度,通过分析两组试验的差值场来探讨土壤湿度年际异常对气候模拟的影响,并初步探讨了影响的可能机制。结果表明:模式模拟的温度和降水对土壤湿度的年际异常非常敏感,土壤湿度的年际变化对中国春夏季气候及其年际变率均有显著影响。当不考虑土壤湿度年际异常时,模式模拟的春夏季平均温度、最高温度、最低温度在我国大范围内降低,春夏季降水在东部大部分地区明显减少,西部增加。而模式模拟的春夏季温度、降水年际变率在中国大部分地区减弱。但当考虑土壤湿度的年际变化,则能在一定程度上提高模式对气候年际变率的模拟能力。在进一步分析表明土壤湿度年际异常时,主要通过改变地表能量通量和环流场,对温度、降水产生影响。当不考虑土壤湿度年际异常时,地表净辐射通量减少,地表温度降低,感热通量减少。感热通量差值场的空间变化和温度差值场的空间变化一致,感热通量对温度有一定影响。而潜热通量差值场的空间变化和降水的差值场的空间变化一致,可见降水受地表潜热通量的影响。土壤湿度年际异常引起的环流场的变化也是导致气候变化的原因之一,地表能量和环流场年际变率的改变对春夏季气候年际变率存在一定影响。  相似文献   

15.
春季青藏高原感热对中国东部夏季降水的影响和预测作用   总被引:1,自引:0,他引:1  
利用1980-2012年青藏高原中、东部71个站点观测资料、全中国756站的月降水资料、哈得来中心提供的HadISST v1.1海温资料以及ERA-Interim再分析资料,综合青藏高原的感热加热以及全球海温,研究了春季青藏高原感热对中国东部夏季降水的影响,并建立预报方程,探讨了青藏高原春季感热对中国降水的预报作用。结果表明,青藏高原春季感热与中国东部降水关系密切,青藏高原春季感热异常增强伴随着长江流域中下游同期降水增多,后期夏季长江流域整流域降水也持续偏多,华南东部降水偏少。春季青藏高原感热的增强与环北半球中高纬度的罗斯贝波列密切相关,扰动在北太平洋形成的反气旋环流向西南方向延伸至西北太平洋,为长江流域输送大量的水汽,有利于降水的发生。夏季,伴随着前期青藏高原感热的增强,南亚高压位置偏东,西北太平洋副热带高压(西太副高)位置偏西偏南,西太副高北侧为气旋式环流异常。在西太副高的控制下,华南东部降水减少;西太副高西侧的偏南气流为长江流域带来大量水汽,并与来自北部气旋式环流异常西侧的偏北风发生辐合,降水增多。青藏高原春季感热异常是华南和长江流域夏季降水异常的重要前兆信号。加入青藏高原春季感热后,利用海温预报的华南、长江流域夏季降水量与观测值的相关系数有所提高,预报方程对区域降水的解释方差提高约15%。   相似文献   

16.
首先对青藏高原地表热通量再分析资料与自动气象站(AWS)实测资料进行对比, 结果表明: 相对于美国国家环境预报中心和国家大气中心20世纪90年代研制的NCEP/NCAR(Kalnay 等1996)和NCEP/DOE (Kanamitsu 等2002) 再分析资料, ECMWF(Uppala 等2004)资料在高原地区的地表热通量具有较好的代表性。进一步利用奇异值分解(SVD)方法分析了ECMWF资料反映的高原地面热源与我国夏季降水的关系, 发现前期青藏高原主体的冬季地面热源与长江中下游地区夏季降水量呈负相关, 与华北和东南沿海地区的夏季降水量呈正相关。而长江中下游地区夏季降水量还与春季高原南部的地面热源存在负相关、与高原北部的地面热源存在正相关。高原冬、春季地面热源场的变化是影响我国夏季降水的重要因子。  相似文献   

17.
青藏高原地面热源对亚洲季风爆发的热力影响   总被引:23,自引:4,他引:23  
利用多年NCEP/NCAR再分析全球逐候平均气象场资料和逐旬感热、潜热资料,对亚洲夏季风爆发期间青藏高原及其邻近地区地面加热场的特征进行分析。着重讨论了高原和邻近地区感热加热对亚洲夏季风爆发的影响,具体分析了高原感热加热对亚洲夏季风推进的影响机制,以及对热带低层西风气流的作用。结果发现,中纬度主原的感热加热所造成的经、纬向热力差异是导致亚洲夏季风爆发的原因。亚洲夏季风建立区域和时间的差异与高原感热加热的区域性有关。高原感热加热在南海夏季风爆发前后对南海地区低层西风所流所起的作用不同,在季风爆发前是加速低层西风,在季风爆发后起削弱西风气流的作用。对亚洲夏季风爆发早年和晚年的感热加热进行了对比分析,发现亚洲夏季风爆发时间的年际变化与热源的年际变化有关。  相似文献   

18.
欧亚大陆干旱半干旱区感热通量的时空变化特征   总被引:4,自引:0,他引:4  
利用1958—2002年ERA-40再分析感热通量资料进行EOF分析,结果显示,无论春季还是夏季,欧亚大陆干旱半干旱区感热通量都有3个主模态。第1模态都表示空间分布的一致性,20世纪70年代中后期开始,欧亚大陆干旱半干旱区春季感热通量明显增强,而夏季却明显减弱。第2、3模态表示了空间分布的不一致性,且存在年际、年代际变化特征。小波分析结果表明,欧亚大陆春、夏季感热通量存在明显的年际、年代际变化特征,且年代际变化信号强于年际变化信号。  相似文献   

19.
伊朗高原和青藏高原热力作用对东亚区域气候具有重要影响。基于1979—2014年欧洲中心ERA-interim月平均再分析地表热通量资料,分析了春、夏季青藏高原与伊朗高原地表热通量的时、空分布特征以及春、夏季青藏高原与伊朗高原地表热通量的关系。结果表明,春、夏季青藏高原与伊朗高原地表热通量在季节、年际和年代际尺度上具有不同的时、空分布特征。对于青藏高原,春、夏季地表感热呈西部大东部小、地表潜热呈东部大西部小;地表感热在春季最大且大于地表潜热,地表潜热在夏季最大且大于地表感热。在年际时间尺度上,春、夏季青藏高原地表热通量异常的年际变化在东、西部不一致,青藏高原西部,地表感热与地表潜热有较强的负相关关系。青藏高原地表感热异常具有很强的持续性,当春季地表感热较强(弱)时,夏季高原地表感热同样较强(弱)。青藏高原东部与西部地表热通量的年代际变化有明显差异,春(夏)季青藏高原东部地表感热呈显著的年代际减弱趋势,1998(2001)年发生年代际转折,由正异常转为负异常;而青藏高原西部地表感热在春季则有显著的增大趋势,2003年发生年代际转折,由负异常转为正异常。青藏高原东部地表潜热仅在春季为显著减弱趋势,2003年出现年代际转折,由正异常转为负异常;青藏高原西部地表潜热在春、夏季都有显著减弱趋势,年代际转折出现在21世纪初,由正异常转为负异常。对于伊朗高原,春、夏季地表热通量的空间分布在整个区域较一致,地表感热在夏季最大,地表潜热在春季大、夏季小,但各季节地表感热都大于地表潜热。相对于青藏高原地表感热,伊朗高原地表感热在各月都更大。在年际时间尺度上,春、夏季伊朗高原各区域地表热通量异常的年际变化较一致;地表感热与潜热有很强的负相关关系;伊朗高原地表感热、潜热异常都具有持续性,当春季地表感热(潜热)通量较强(弱)时,夏季地表感热(潜热)通量同样较强(弱)。伊朗高原北部与南部地表热通量的年代际变化存在差异。其中,春、夏季伊朗高原北部地表感热(潜热)呈显著增强(减弱)趋势,在20世纪末发生了年代际转折,春、夏季北部地表感热(潜热)由负(正)异常转为正(负)异常。而伊朗高原南部春、夏季地表热通量无显著变化趋势,但春季地表感热、潜热与夏季地表感热同样在20世纪末存在年代际转折,地表感热(潜热)由负(正)异常转为正(负)异常。春、夏季两个高原地区地表热通量的关系主要表现为:就春季同期变化而言,伊朗高原地表感热与青藏高原西部地表感热具有同相变化关系,与青藏高原东部地表感热具有反相变化关系,伊朗高原地表潜热与青藏高原东部地表潜热具有同相变化关系;就非同期变化而言,春季伊朗高原地表感热与夏季青藏高原东部地表感热存在反相变化关系。   相似文献   

20.
In this paper, an Atmosphere-Vegetation Interaction Model (AVIM) is coupled to the Regional Integrated Environment Model System (RIEMS), and a 10-year integration for China is performed using the RIEMS-AVIM. The analysis of the results of the 10-year integration shows that the characters of the spatial distributions of temperature and precipitation over China are well simulated. The patterns of simulated surface sensible and latent heat fluxes match well with the spatial climatological atlas: the values of winter surface sensible and latent heat fluxes are both lower than climatological values over the whole country. Summer surface sensible heat flux is higher than climatological values in western China and lower in eastern China, while summer surface latent heat flux is higher than climatological values in the eastern and lower in the western. Seasonal variations of simulated temperature and precipitation of RIMES-AVIM agree with those of the observed. Simulated temperature is lower than the observed in the Tibetan Plateau and Northwest China for the whole year, slightly lower in the remaining regions in winter, but consistent with the observed in summer. The simulated temperature of RIEMS-AVIM is higher in winter and lower in summer than that of RIEMS, which shows that the simulated temperature of RIEMS-AVIM is closer to the observed value. Simulated precipitation is excessive in the first half of the year, but consistent with the observed in the second half of the year. The simulated summer precipitation of RIEMS-AVIM has significant improvement compared to that of RIEMS, which is less and closer to the observed value. The interannual variations of temperature and precipitation are also fairly well simulated, with temperature simulation being superior to precipitation simulation. The interannual variation of simulated temperature is significantly correlated with the observed in Northeast China, the Transition Region, South China, and the Tibetan Plateau, but the correlation between precipitation simu  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号