首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
孙哲  魏鸣 《大气科学学报》2016,39(2):260-269
利用NCEP再分析资料、探空资料、闪电定位资料和南京、常州多普勒雷达资料,通过对比分析南京2012年2月22日春季雷暴和2011年8月10日夏季雷暴两次过程,研究不同季节影响雷暴发生的大气结构以及强弱雷暴地闪特征的差异。结果表明:风矢位温(V-3θ)图揭示的大气动力热力水汽特征能够为雷暴的潜势预报提供先兆信息。两者相较而言,春季雷暴的动力抬升作用明显;夏季雷暴主要由热对流引起,对流层上层的动力抽吸作用不明显。春季弱雷暴正地闪在总地闪中所占比例较高。无论春季弱雷暴还是夏季强雷暴,地闪落点与辐合区对应关系明显,且地闪的落点也与雷达反射率因子有较好的对应关系:地闪主要分布在强回波区(大于40 d Bz)及其外围区域。但在较强雷暴云的发展阶段,地闪多发生在风暴体伸展方向的一侧,具有引导雷达回波移动的作用,夏季强雷暴地闪簇集在垂直风切变区域。  相似文献   

2.
顾媛  张卫斌  崔雪东 《气象科技》2021,49(4):654-661
基于2007—2018年浙江省ADTD闪电监测资料,分析该区域地闪时空分布特征,进而选用地闪密度和强度作为致灾要素,进行致灾危险性评估。结果表明:落雷日数和正地闪比例的年际变化均呈增长趋势,全年地闪集中发生于6—9月的12:00—20:00。春季正地闪比例高,地闪多发于傍晚和夜间;夏季日地闪落雷面积广、密度极值高,午后雷暴占主导地位。地闪密度相对高值区随季节演变而自西向东移动,年平均地闪密度总体呈浙中多南北少的特征。雷电流幅值主要分布于15~45kA,地闪强度平均值在舟山最高(44.49kA),台州最低(32.69kA),地闪密度和强度的空间分布特征各异。致灾危险性极高等级在浙东沿海一带和杭州—绍兴交界呈片状分布,另在温州西北部、浙中和浙西地区呈絮状分布,致灾危险性与历史雷灾个数、人员伤亡总数的空间分布总体一致。  相似文献   

3.
利用1960─2018年抚州市11个气象站雷暴资料和NCEP再分析资料,采用线性趋势、Mann-Kendall检验、小波分析等方法,分析了抚州市雷暴的时空分布特征及变化趋势,并分析了雷暴天气与气象要素的关系及其主要影响系统。结果表明:抚州市雷暴空间分布不均,东多西少,南多北少;年均雷暴日数有70.5 d,总体呈下降趋势,平均以-4.46 d·(10 a)-1速度减少。雷暴主要发生在春、夏季,两季雷暴日数占全年雷暴总日数的86.6%,雷暴发生频次春季以4月最多,夏季以8月最多;雷暴发生时间存在明显的日变化,主要发生在13─20时。雷暴日数在1987年发生突变,存在3~6 a的短周期、13~15 a的年代际周期变化和21 a左右的低频振荡。抚州市雷暴的天气形势主要有锋面型、高空槽(切变线)型、副热带高压边缘型、东风波与台风倒槽型。  相似文献   

4.
基于闪电数据的雷暴识别、追踪与外推方法   总被引:4,自引:2,他引:2       下载免费PDF全文
该文提出了一种新的雷暴识别、追踪与外推方法。该方法基于地闪数据,利用密度极大值快速搜索聚类算法实现雷暴的识别,采用Kalman滤波算法实现雷暴的追踪与外推。应用该方法处理了2013年的全国地闪定位数据,同时利用多普勒天气雷达等数据对选取的个例进行评估。结果表明:该方法能有效识别雷暴并对其进行实时追踪,且能有效处理雷暴分裂与合并的情况;算法具有较好的0~60 min的临近外推预报能力,各项性能指标整体与TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting) 算法接近,在30 min时效有更好的表现。该方法能够实时监测、预报全国雷暴发生发展状况,对于0~60 min临近预报具有一定参考价值。  相似文献   

5.
周永水  谢波  严小冬 《贵州气象》2010,34(6):14-17,21
利用贵州84个测站1961—2007年雷暴观测资料,通过数理统计、EOF分析、一元线性回归拟合,研究了贵州雷暴的气候变化特征。结果表明:贵州年雷暴日数较多,年际变化较大,季节变化也极为显著,从冬季到夏季,雷暴发生日数逐渐增多,从夏季到冬季,雷暴逐渐减少。贵州雷暴空间分布在冬季主要为南北走向,在其余季节为东西走向,在中部一线和南部常年存在几个低值中心,年雷暴日数均在20d/a以下。春季和夏季,春季和秋季,秋季和冬季的雷暴日数具有较高的正相关关系。从小波分析的结果看,4个季节的年雷暴日数均存在周期振荡,不同季节的振荡周期存在一定的差异。对贵州省47 a中4个季节雷暴日数进行线性拟合发现:贵州雷暴有逐渐减少趋势。  相似文献   

6.
利用湖北省2013—2018年6—8月ADTD闪电探测数据对该地区的闪电活动进行特征分析后发现, 地闪密度和日变化特征与地形密切相关, 其中, 闪电密度高值区出现在海拔500~1 500 m的中尺度山脉向平原的过渡地带以及山脉之间的平原(河谷)地区; 山区的地闪集中在午后至傍晚时段, 具有明显的单峰特征, 平原的地闪日变化相对平缓, 虽然主峰值同样出现在午后, 但夜间地闪活动依然活跃。基于2015—2016年6—8月逐6 min雷达组合反射率拼图产品和地闪资料挑选了94例伴有显著闪电活动的雷暴系统个例, 经统计分析后发现, 雷暴系统的初次地闪、峰值地闪和末次地闪均集中出现在13:00—18:00, 其中, 山区雷暴的地闪持续时间较短, 地闪频数峰值较小; 平原雷暴的地闪持续时间更长, 地闪频数峰值也更大; 山麓雷暴的特征则介于两者之间。利用ERA-Interim再分析资料进行成因分析后可知, 地形强迫和局地热力不稳定是影响湖北山区夏季闪电密度分布和日变化特征的关键因子。   相似文献   

7.
温泉雷暴天气统计分析   总被引:2,自引:0,他引:2  
通过对1980—2005年温泉气象站雷暴天气现象的统计分析,指出了当地雷暴的时空分布特征及其主要移动路径,为夏季人工防雹工作提供参考资料。  相似文献   

8.
根据珠海市1978—2007年雷暴监测资料和广东省1999—2006年闪电定位资料,采用了数理统计、小波分析等方法,分析了珠海市雷暴的气候特征。结果表明,近30年来珠海雷暴日数呈波动下降趋势,平均每10年减少3.08 d,全年各月均可能发生雷暴,主要集中在4—9月,约占全年的90%以上,83%的雷暴发生在白天,以13:00—15:00最活跃,约占总雷暴日数的28.9%,雷暴日数存在13~19年的震荡周期,地闪主要分布在珠海的西北-西-西南部、东北部,高空槽和副热带高压形势下,雷暴天气出现最多。  相似文献   

9.
文章利用二连浩特市机场2010—2016年夏季(6—8月)常规气象观测资料,对雷暴进行统计和分析,结果表明:二连浩特市机场夏季发生雷暴的概率不高,雷暴日数分布不均匀;雷暴连续性不强;雷暴持续时间短,一般在0~2h以内;雷暴多数出现在午后至傍晚,上午出现的概率较低;雷暴形成在机场西南、北和西北方向,消失在东和东南方向,移动方向是由西向东。准确了解雷暴的分布特征,为航空飞行活动的安全、正常和效率服务。  相似文献   

10.
李松如  石茹琳  孙豪 《气象科学》2021,41(3):417-426
利用NCEP再分析资料、雷达、卫星资料以及闪电定位资料对2019年7月27日呼和浩特市一次强雷暴天气过程进行了综合分析。结果表明:此次雷暴过程主要受贝加尔湖低压中心和蒙古高原高空槽东移影响;雷暴发生前,K指数和CAPE等不稳定参数均超过阈值,大气层结呈现上干冷下暖湿的不稳定形势,并且垂直方向上低空辐合、高空辐散的结构与强烈的上升气流相配合,为雷暴天气的发生提供了有利条件;在整个雷暴过程中负地闪占主导地位,但雷暴的不同发展阶段地闪分布不同,在雷暴发展及成熟阶段,负地闪数明显多于正地闪数,而在雷暴消散阶段,正地闪数大幅增加,甚至超过负地闪;闪电多分布于强回波区域,但闪电频数最高的地方不一定与强回波中心相对应;地闪的落区主要位于云顶温度低于240 K的区域,对应的云顶相态为冰相和混合相。  相似文献   

11.
利用西天山地区14个气象站1960-2010年雷暴资料和新疆雷电监测网2008年观测资料,分析了西天山地区雷暴和闪电变化特征。结果表明:西天山地区年平均雷暴日数分布呈东西多,南北少的形势。该区域年平均雷暴日数在17.3~85.5 d之间,并以2.7 d/10 a的速率减少。西天山地区雷暴日数的年变化呈单峰型,并在6-7月达到最大值。整个区域以正闪为主,正闪占总闪的比例达66%。该区域闪电电流强度在-130~+63 kA之间,负闪强度大于正闪强度。  相似文献   

12.
浙江省两套闪电定位系统地闪数据对比   总被引:1,自引:1,他引:0       下载免费PDF全文
针对2009—2013年浙江省气象部门和电力部门闪电定位系统 (lightning location system, LLS) 监测的地闪 (cloud-to-ground lightning, CG lightning) 数据,从时空分布及探测效率等方面对两者进行对比。结果表明:电力部门LLS监测的年平均地闪频次稳定大于气象部门LLS监测的年平均地闪频次。从空间分布看,沿海平原和金衢盆地等平原地带,两者的地闪密度相近;在杭州和衢州交界地区,气象部门LLS监测的地闪密度稳定大于电力的地闪密度;在其他地区 (如浙西北、浙中南部和浙南等大部分地区),电力部门LLS监测的地闪密度稳定大于气象部门LLS监测的地闪密度。利用雷暴日数对两者的探测能力对比可知,气象部门LLS对一些较弱雷暴天气过程中的地闪有漏测可能。利用雷击跳闸记录对比分析,电力部门LLS逐年探测效率稳定高于气象部门LLS的探测效率,两者相差约6%。  相似文献   

13.
目前尚没有研究给出中国大陆长时间序列的小时分辨率雷暴气候特征.基于1971—2010年全国796个国家级基本基准站逐时雷暴观测数据,给出中国逐时雷暴的时、空演变和持续时间等气候分布特征,获得了一些新的事实.中国总体年平均雷暴时数与雷暴日数空间分布形态较为接近,但年平均雷暴日数高值区的青藏高原地区不同,其年平均雷暴时数较...  相似文献   

14.
本文利用长沙区域4个气象站1971~2010年40年观测资料,研究了本区域雷暴的气候变化特征。研究结果表明:长沙区域雷暴日数呈东西山区多,中部平原少的空间分布特征,长沙东部和西部的浏阳、宁乡分别为最高和次高发区,年平均雷暴日数分别达62天和53天,而中部地区的马坡岭年平均雷暴日仅39天。在月变化特征上,长沙区域的雷暴主要出现在2~9月,且呈现出典型的双峰型结构,雷暴最多的月份分别出现在4月和8月。在6~9月,浏阳的雷暴日数要明显大于宁乡、望城和马坡岭的雷暴日数,而在其它月,4个观测站的雷暴日数相差不大。在日变化特征上,长沙区域4个测站的雷暴主要出现在午后到傍晚的时段其中以15~17时最多,在13~18时,浏阳的雷暴次数要比另外3个测站雷暴次数明显偏多。1971~2010年长沙区域4个测站的年雷暴日数均呈现出减少的趋势,其中以浏阳的减少趋势最为明显,2000年以后长沙区域4个测站的初雷日略有推迟,而终雷日明显提前。发生雷暴时,宁乡站对K指数及SI指数所代表的不稳定能量较其它3站略高。   相似文献   

15.
利用2010—2018年全球闪电定位网(WWLLN)观测资料, 采用基于闪电密度的空间聚类算法(DBSCAN)建立了西北太平洋地区雷暴数据集, 研究了该区域雷暴的时空分布特征, 并进行海陆差异对比。研究结果表明, 在合理设定DBSCAN参数阈值的条件下, 基于WWLLN闪电聚类的雷暴与天气雷达观测在时空分布和过程演变上具有一致性。西北太平洋区域的日均雷暴数为3 869, 雷暴的闪电密集区平均面积为557.91km2, 平均延展尺度为31.99 km, 平均闪电频次为33 str/(h·thu)。在空间分布上, 东南亚沿海地区与热带岛屿的雷暴活动最强, 南海的雷暴活动强于深海。距离海岸线越近的海域其雷暴面积越大。在季节分布上, 整个区域雷暴活动在夏季(6—8月)达到全年最强, 南海雷暴活动6月达到峰值, 而日本东部近海海域的雷暴活动则在冬季达到最强。我国内陆南方地区雷暴3月开始显著增多, 雷暴平均面积达到最大, 但雷暴平均闪电频次5月才达到峰值。在日变化方面, 陆地雷暴活动呈现典型的单峰型特征, 大部分雷暴发生在午后及傍晚。海洋雷暴日变化则较为平缓, 南海具有其独特的雷暴日变化特征。   相似文献   

16.
晋中市雷暴天气变化特征分析   总被引:1,自引:0,他引:1  
本文对晋中市近40 a雷暴天气资料进行统计,分析了年雷暴日数的变化特征及其时空分布情况,表明了晋中市雷暴日数呈逐年下降趋势,但下跌趋势不大,在过去的40 a中大约减少年平均雷暴日数1 d;一年中雷暴的活动期在5月~9月,活跃期6月~8月的平均雷暴日数占全年的76.1%。年雷暴日数的空间分布特征为西部平川地区明显少于东部山地区域。  相似文献   

17.
利用杭州市1966—2005年雷暴日资料和2008—2009年闪电定位资料,运用ArcGIS空间分析技术结合数理统计方法,分析杭州市雷电活动时空分布特征,并采用地闪密度空间分布与最大地闪强度空间分布的叠置作为雷电风险的主要评价指标,得到杭州市雷电灾害致灾危险性区划。分析结果表明,在时间分布上,杭州市雷暴天气多发生在夏季和午后时段;在空间分布上,杭州市地闪密度较大地区多集中在山脉向阳坡、迎风坡以及大面积水域向陆地过渡的区域。杭州市雷电灾害风险高值区主要集中在上城区、江干区、滨江区、西湖区西部以及淳安县西南部、富阳市大部、余杭区西部、萧山区中部地区。雷电风险高值区主要集中在人口稠密区、工业集聚区、湖边、江边等,这些都可能与气温、空气湿度、地形地貌、建筑物密集密切相关。  相似文献   

18.
杭州市雷电活动特征及雷电灾害区划   总被引:2,自引:0,他引:2  
利用杭州市1966-2005年雷暴日资料和2008-2009年闪电定位资料,运用ArcGIS空间分析技术结合数理统计方法,分析杭州市雷电活动时空分布特征,并采用地闪密度空间分布与最大地闪强度空间分布的叠置作为雷电风险的主要评价指标,得到杭州市雷电灾害致灾危险性区划.分析结果表明,在时间分布上,杭州市雷暴天气多发生在夏季...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号