首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
青藏高原四季划分方法探讨   总被引:2,自引:0,他引:2  
利用中国气象局国家气象信息中心提供的青藏高原60个测站1961~2007年逐日气温资料,分析常用的四季划分方法在高原的适用性,指出各种四季划分方法的不足和局限,并根据四季持续时间的合理性、物候特征、海拔高度、气候(温度)分布特征等因素提出了针对不同的生产、生活目的而建立的新四季划分方法。探讨认为:(1)根据高原物候特征和气温相结合的方式得到的"物候四季划分方法"即"4℃-12℃-10℃-1℃"对高原农牧业尤为适合;(2)"海拔季节划分方法"对高原旅游和人们衣着尤为适合,海拔季节划分方法把高原分成二个区:海拔4000m以上四季划分方法为"5℃-12℃-12℃-5℃",4000m以下四季划分方法为"5℃-15℃-15℃-5℃;"(3)"生活季节划分方法"对高原不同区域的生产生活尤为适合,生活季节划分方法将高原分为三个区:Ⅰ区四季划分方法为"6℃-16℃-16℃-6℃",Ⅱ区四季划分方法为"5℃-12℃-12℃-5℃",Ⅲ区四季划分方法"7℃-7℃"划分春冬和秋冬,不存在夏季。最后,综合以上各种方法的优缺点,初步定义"高原普适季节划分方法"即"5℃-15℃-15℃-5℃"为高原总体的四季划分方法,对高原整体的国民经济和政府活动、旅游、人们的衣着、生活生产、季节类产品的销售具有总体的指导意义。  相似文献   

2.
哈尔滨的四季与季节划分指标的探讨   总被引:3,自引:1,他引:3  
详细叙述了哈尔滨四季的物候特征、农事活动、人们衣着变化等特点,并据此划分了哈尔滨的四季。提出用30年月平均气温T^-30划分四季的指标:5.0℃≤T^-30≤19.9℃为春秋季,T^-30≥20.0℃为夏季,T^-30<5.0℃为冬季。  相似文献   

3.
利用1961~ 2007年NCEP/NCAR的再分析逐日资料,分析高原主体上空大气环流的季节变化和受到高原影响的东亚大型环流系统的季节变化,以此证明本文得到的“高原普适性划分方法”的合理性.得到的初步结论概括如下:高原主体上空的位势高度、风场、高空温度、降水的季节变化和高原普适性季节划分方法划分的高原四季变化一致,高原南亚高压、副热带高压、副热带西风急流的三个特征指数季节变化和高原普适性季节划分方法划分的高原四季变化一致,这些结论都说明高原普适性季节划分方法划分的高原四季是合理的;风场季节率(500hPa、100hPa)显著区随高度升高向赤道靠近,风场季节率的变化主要和东亚季风的变化有关,大气环流系统季节率的显著说明了大气环流的季节变化,同时也证明了高原普适性季节划分方法的合理性.  相似文献   

4.
陈效逑 《气象学报》2000,58(6):726-737
探讨了Taunus山区3个地点的树木物候生长季节与气温生长季节年际波动特征之间的关系.结果表明,在不同地形部位上,物候生长季节长度与气温≥10℃持续期在振幅、波形和趋势方面存在明显差异,二者的相关系数均未达到显著的水平.因此,尽管这两种生长季节的多年平均初、终日期和长度是接近的,但就个别年份而言,它们不具有可比性和相互替代性.在低海拔山麓地带,物候生长季节长度与气温≥5℃持续期正相关显著,而与气温≥5℃初日负相关显著,说明物候生长季节具有对较长时期内气温波动响应的特点,特别受到早春气温高低的显著影响,表现为春季气温越高,≥5℃初日越早,当年物候生长季节越长;春季气温越低,≥5℃初日越晚,当年物候生长季节越短的对应关系.据此,春季气温的高低就成为诊断低海拔地区植被生长季节长度对气候变化响应的一种前期征兆.此外,还建立了春季物候期与无霜期之间的区域统计模式,用以进行区内缺乏气象资料地点的无霜期估算.  相似文献   

5.
一、季节的一般划分方法季节的划分方法有多种(表1),主要有24节气中以“四立”为四季开始日期的节气法;有12—2月为冬季,3—5月为春季,6— 8月为夏季,9—11月为秋季的月份法;有候平均气温<10℃为冬季,10—22℃为春、秋季,>22℃为夏季的候温法;有以当地各物候反映,参考日平均气温稳定通过有关界限温度状况的物候法等。  相似文献   

6.
青海气候     
青海由于受海拔、地形、纬度、远离海洋的地理位置、大气环流形式等因素的相互作用,形成了独具特色的高原大陆性气候特征。1冬季长而不寒冷,夏季短促而凉爽,四季变化不明显海拔2km以下的河湟谷地的冷期(日平均气温0≤℃,以下同)不到4个月;海拔2~4km的地区冷期为4~6个月;4km以上的地区冷期长达6个月以上。青海冬季虽长,但非我国最寒冷的地方。冬季(1月)平均气温在河湟谷地为-5.3℃~10.9℃,比东部同纬度地区低,但比黑龙江、新疆的气温要高。夏季(7月)平均气温,河湟谷地为14.2℃~19.8℃,7月平均最高气温柴达木盆地为21℃~27℃,与庐山、秦皇岛、青岛等地的气温相仿。若按通常的气候标准划分四季,青海绝大部分地区长冬无夏,春秋相连。除青南和青北的某些山地“六月暑天犹着棉,终年多半是寒天”之外,其他地区则冬天不冷,夏天不热,夏季是温凉季节。如西宁市,年平均气温5.6℃,有温带季风气候的特征,近30年来,极端最低气温不到-20℃,极端最高气温30℃左右,其凉爽程度仅次于拉萨,是我国夏季最凉爽的城市。2气温地区分布差异大,垂直变化明显青海年平均气温-5.6℃~8.6℃,由于幅员辽阔,地形复杂,高低悬殊,各地的...  相似文献   

7.
青藏铁路沿线的四季划分及其温度变化分析   总被引:28,自引:7,他引:21  
讨论了高原地区四季划分的标准,认为若以日平均气温作为指标,应比适用于我国东部的“张宝垄标准”低5℃,根据铁路沿线7个气象站:40年资料和温泉气象站6年资料,划出了各站四季的开始日期,发现格尔木和拉萨有短暂的夏季,高原主体上是“常年无夏,春秋相连”,仅昆仑山口附近是“全年皆冬,春风不渡”。高原上温度随纬度的变化与我国东部平原相似,也是冬季梯度大,夏季小;逆温层厚度以柴达木盆地为最厚,向南逐渐变薄。  相似文献   

8.
近50年青藏高原地面气温变化的区域特征分析   总被引:26,自引:16,他引:26  
青藏高原地面气温与其上空500hPa温度有着密切的关系,基于这种关系,重建得到青藏高原19502000年连续、可靠的台站地面月平均气温序列。利用重建后的地面月平均气温资料,对青藏高原年及各季节平均气温的变化进行区域划分,分析了近50年青藏高原全年及各季节气温变化的区域特征。结果表明,青藏高原的年、春、夏、秋季与冬季平均气温变化区域分别可以划分为4个区、2个区、4个区、5个区和4个区。青藏高原近50年气温总体上升,但同时存在明显的区域性和季节性差异,大部分区域的平均气温变化和高原总体升温相似,春季和冬季升温明显,特别是春季和冬季的Ⅰ区。夏、秋季升温趋势不明显,夏季Ⅰ区与秋季Ⅲ区还表现出较小的降温趋势,降温幅度分别为-0.26℃和-0.11℃。  相似文献   

9.
利用玉屏国家地面气象观测站1961—2016年逐日平均气温资料,采用《气候季节划分》(QX/T15—2012)方法,对玉屏县四季起始日期及长度进行分析。结果表明:(1)玉屏县常年四季起始日期:入春3月5日,入夏5月23日,入秋9月22日,入冬11月28日;四季长度:春季79 d,夏季122 d,秋季67 d,冬季97 d。(2)56 a来玉屏县春季起始日期呈提前趋势,长度呈增加趋势,两者均在20世纪90年代前后出现了转折,但未发生气候突变;夏季起始日期及长度趋势变化不明显;秋季起始日期呈推后趋势,长度变化不明显;冬季起始日期变化不明显,长度呈减少趋势;春季长度增加、冬季长度减少主要为春季起始日期提前所致。(3)玉屏县四季起始日期的年际变幅大,起始日期比常年偏早(晚)连续2候以上的异常年份,春季为23%,夏季为27%,秋季为32%,冬季为25%。(4)玉屏县春季开始后出现低于季节指标≥1候的概率达41%,表明玉屏县春季出现倒春寒天气的概率很大。(5)比较气象行标法与稳定通过法的四季起始日期及长度,气象行标法对玉屏县的四季划分更能满足于农业生产的需要。  相似文献   

10.
浙江省近50年气温变化及四季划分   总被引:3,自引:0,他引:3  
利用浙江省所有站点自建站以来的日气温资料,用一元线性回归方法分析了浙江省年平均气温的变化趋势,其升温率为0.117℃/10a,通过0.01的显著性水平检验。研究了气温变化的空间分布特征。绝大部分站点表现为升温趋势,只有岱山、普陀、武义几个站点表现为降温趋势。从空间分布特征来看浙江省极值温度的变化情况,衢州、金华和丽水西部地区超过35℃的天数为减少趋势,其他地区均为增加趋势。极端最高温度的年际变化趋势跟平均温度的变化趋势基本相同。最低温度低于0℃的天数全省都为下降趋势,极端最低温度为上升趋势。气温年较差呈下降趋势,年平均日较差呈微弱的下降趋势。按照气候季划分季节的方法,对浙江省分南、北两部分阐述了四季的平均入季时间及平均季长。确定历史各年的季节划分以后,讨论了季节平均气温的变化,南北地区都表现春冬增暖,夏秋变凉。  相似文献   

11.
用甘肃省春麦区31个县区1970~2000年的旬平均气温、旬日照时数、旬降水量、≥0℃积温、海拔高度等建立春小麦生态气候适宜度隶属函数和综合适宜度,结果表明:春小麦对海拔高度适宜度在0.15~0.85之间,最小出现在定西和古浪,最大值在金塔和敦煌。≥0℃的积温适宜度与海拔高度适宜度趋势基本一致。旬平均气温适宜度在0.35~0.56之间,说明气温对春小麦生产较适宜。用积分回归分析春小麦在不同气候类区不同生育时段生态气候条件的贡献系数,温和平川绿洲灌区光、温、水要素的平均贡献系数最高,温暖沿沙漠绿洲灌区次之,冷凉浅山半灌溉区、温凉半干旱旱作区最小。用生态气候适应性对春小麦的影响程度和依赖度及产量,确定生态气候区划综合指标体系将春小麦划分出5级适生种植区划,并提出利用和开发生态气候资源有效途径。  相似文献   

12.
基于BCC-CSM季节气候预测模式系统历史回报数据和国家气象信息中心提供的中国地面降水月值数据,通过多方法对比并讨论了影响预测结果的因素,利用长短期记忆(Long Short-Term Memory,LSTM)网络预测2014年和2015年中国夏季降水。结果表明:LSTM网络的预测效果较逐步回归、BP神经网络及模式输出结果有一定优势。参数调优对于LSTM网络预测效果影响较大,重要参数有隐含层节点数、训练次数和学习率。选择合适的起报月份数据有助于提升季节预测的准确性,利用4月起报的数据预测夏季降水效果较好。海冰分量因子对降水季节预测有正贡献。在2014年、2015年夏季降水回报试验中,LSTM网络对降水整体形势有一定的预测能力,Ps评分分别为74分、71分,距平符号一致率分别为55.63%、55.25%,Ps评分的均值高于同期全国会商及业务模式。  相似文献   

13.
采用标准有效温度和不舒适指标,分析了南京市热舒适状况。以南京市2010年全年的逐时气温和相对湿度资料为基础,计算了2010年逐月每小时气温和相对湿度平均值。通过假定在均匀的环境条件下,遮阴的室内,伏案工作活动量为1.0 met,夏季服装热阻为0.6 clo,春、秋、冬季服装热阻为0.9 clo,室内风速约为0.125 m/s,计算出各月逐时标准有效温度和不舒适指标。结果表明,南京市的热舒适状况具有明显的季节变化和日变化特征。季节变化特征显示:夏冬两季热舒适度偏低,夏季平均标准有效温度和不舒适指标分别为27.6℃和0.7,人体感觉偏热;冬季平均标准有效温度和不舒适指标分别为9.4℃和-2.8,人体感觉偏冷;春秋两季热舒适度指数高,春季平均标准有效温度和不舒适指标分别为19.7℃和-0.8,秋季为17.2℃和-1.3,人体普遍感觉舒适,但舒适期持续时间短,全年约62天。就日变化特征而言,冬季白天人体热舒适度普遍高于夜间,夏季则相反。上述结果能够较好地反映南京市人体的普遍热舒适感,可为旅游、建筑、医疗、交通等相关行业和部门提供参考。  相似文献   

14.
1961—2017年云南季节变化特征分析   总被引:1,自引:0,他引:1  
姚愚  李蕊  郑建萌  刘金福 《气象科学》2020,40(6):849-858
参照《中华人民共和国气象行业标准-气候季节划分》(QX/T 152-2012)中关于气候季节的定义标准,利用1961-2017年云南122个气象站的气温资料,分析了云南的气候季节区域的空间分布和季节开始日期及长度的变化趋势。云南共有4种气候季节区域,分别是四季分明区、无夏区、无冬区和常春区。无夏区范围最广,无冬区其次。不同年代四种季节气候区域空间分布范围不尽相同,无夏区和无冬区空间范围变化最显著。2011年以后云南出现四季分明区范围明显增大的现象,这与近年来气候变暖背景下云南气温年较差增大的观测事实相一致。云南四季分明区春季和秋季较长,夏季和冬季较短。无夏区秋季最长、春季次之、冬季最短。无冬区夏季最长、春季和秋季长度接近。不同气候季节区域间春季和夏季开始日期的变化均呈提早趋势,秋季和冬季开始日期有推迟的趋势;在季节长度变化上,夏季增长,冬季变短,但春秋季长度的变化不尽相同。  相似文献   

15.
贺慧霞  瞿章 《高原气象》1993,12(4):384-391
本应用德国自由柏林大学气象研究所的北半球平流层资料,分析了多年各月平均图上的高低压中心,然后统计在各纬带和在各区块上的频数,得到两个主要结果:(1)北半球低层平流高压中心在夏季经常出现于极圈,而低压中心在冬季也经常出现于极圈,连同大规模东西风风系的转换,两形成强烈的反相季变;(2)高压中心在冬季还经常出现于太平洋等地区。这说明地表海陆分布的热力不均匀,在紧贴着对流层低层的平流层里也有所反映。  相似文献   

16.
以欧洲中心数值预报产品为基础,采用EEOFS展开选取“典型场”作为数值预报产品的信息,以统计释用方法研究建立的,可以应用于南海区的热旋路径业务预报方法。该方法于1994年台汛期参加由广东省气象主持的“关于热带气旋预报业务试验项目”,进行了9个台风的共14次预报试验,平均误差24h为187km,48h为252km。  相似文献   

17.
利用改进的NCAR CCM3气候模式, 研究了1992年西北太平洋持续冷海温对东亚初夏季节大气环流的影响。西北太平洋冷海温不利于初夏东亚南支西风急流季节性北移, 引起亚洲东部沿海低槽明显加深, 东亚大槽平均高度场降低了4.66 dagpm, 从而也不利于西太平洋副热带高压的西伸加强。西北太平洋冷海温还不利于我国大陆初夏温度场回升, 特别是引起我国东北地区近地面温度下降2~5 ℃, 是影响东北冷夏现象的重要原因之一。模拟结果表明, 1992年初夏江淮入梅期较常年偏晚, 降水异常偏少, 与紧邻东亚大陆的西北太平洋持续冷海温有关。  相似文献   

18.
利用1960-2009年武汉城区与郊区气象站逐日平均气温资料,采用相同气候季节划分方法,系统分析武汉城区与郊区气候季节起始时间、季节长度的变化趋势及其差异。结果表明:1980-2009年,武汉城区入春、入夏时间比郊区分别提前10 d和5 d,入秋、入冬时间城区比郊区推迟;武汉夏季长度城区比郊区长12 d,冬季、春季长度城区比郊区短6 d和5 d。1960-2009年武汉四季平均起始时间城区与郊区差别较小,但四季最早、最晚出现时间年际差别较大;武汉入春、入夏时间城区与郊区均提前,入秋、入冬时间均推后,但城区四季变化较显著,郊区仅入秋变化显著;武汉城区夏季长度呈极显著延长,冬季长度呈较显著缩短,城区春季、秋季及郊区四季长度变化均不显著。2000-2009年武汉城区与郊区季节起始时间和季节长度的变化较大,这是因为近10 a武汉作为中部地区崛起的支点,城区发展迅速。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号