首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An overview of Chinese contribution to Coupled Model Intercomparison Project–Phase 5(CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 project are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interannual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change projection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface temperature(SST) mean state, seasonal cycle, spatial patterns of Madden–Julian oscillation(MJO) amplitude and tropical cyclone Genesis Potential Index(GPI), global monsoon precipitation pattern, El Nio–Southern Oscillation(ENSO), and Pacific Decadal Oscillation(PDO) related SST anomalies. However, the performances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific monsoon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the20th-century global warming and the future change under representative concentration pathways projection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.  相似文献   

2.
Modeling the Tropical Pacific Ocean Using a Regional Coupled Climate Model   总被引:3,自引:0,他引:3  
A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5°×4°global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2°×1°in longitude-latitude).Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated; this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models,(2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly "linear-regression" method is employed to correct the model's exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described.The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.  相似文献   

3.
The accurate simulation of the equatorial sea surlhce temperature (SST) variability is crucial for a proper representation or prediction of the El Nino-Southern Os- cillation (ENSO). This paper describes the tropical variability simulated by the Max Planck Institute (MPI) forr meteorology coupled atmosphere-ocean general circulation model (CGCM). A control simulation with pre-industrial greenhouse gases is analyzed, and the simulation of key oceanic features, such as SST, is compared with observa- tions. Results from the 400-yr control simulation show that the model's ENSO variability is quite realistic in terms of structure, strength, and period. Also, two related features (the annual cycle of SST and the-phase locking of ENSO events), which are significant in determining the model's performance of realistic ENSO prediction, are further validated to be well reproduced by the MPI cli mate model, which is an atmospheric model ECHAM5 (which fuses the EC tbr European Center and HAM for Hamburg) coupled to an MPI ocean model (MPI-OM), ECHAMS/MPI-OM.  相似文献   

4.
Simulated outgoing longwave radiation (OLR) outputs by two versions of the grid-point atmospheric general circulation model (GAMIL) were analyzed to assess the influences of improvements in cloud microphysics and convective parameterization schemes on the simulation of the Madden-Julian oscillation (MJO) and other tropical waves. The wavenumber-frequency spectral analysis was applied to isolate dominant modes of convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and inertio-gravity (IG) waves. The performances of different versions of the GAMIL model (version 1.0 (GAMIL1.0) and version 2.0 (GAMIL2.0)) were evaluated by comparing the power spectrum distributions of these waves among GAMIL1.0, GAMIL2.0, and observational data. GAMIL1.0 shows a weak MJO signal, with the maximum variability occurring separately at wavenumbers 1 and 4 rather than being concentrated on wavenumbers 1–3, suggesting that GAMIL1.0 could not effectively capture the intraseasonal variability. However, GAMIL2.0 is able to effectively reproduce both the symmetric and anti-symmetric waves, and the significant spectra of the MJO, Kelvin, and MRG waves are in agreement with observational data, indicating that the ability of GAMIL2.0 to simulate the MJO and other tropical waves is enhanced by improving the cloud microphysics and convective parameterization schemes and implying that such improvements are crucial to further improving this model’s performance.  相似文献   

5.
The influences of Tropical Rainfall Measuring Mission (TRMM) precipitation products on the structure and underlying physics of intraseasonal oscillation (ISO) are investigated with the U.S.National Aeronautics and Space Administration Goddard Earth Observing System model version 3 (GEOS-3) data assimilation system (DAS).The strong ISO phase in the 1998 summer is apparently located in the Asian monsoon region and the east equatorial Pacific region.The eastward propagation is a dominant feature for the tropical ISO at 20 to 30-day oscillation while the northeastward propagation is the salient ISO at 30 to 60-day oscillation over the 10°N to 25°N belt region.It appears that the Kelvin wave structure is for the tropical 20 to 30-day oscillation.The tropical 30 to 60-day oscillation has the characteristics of the Kelvin-Rossby wave.The impact of satellite-derived precipitation (and its associated latent heating) on the ISO intensity is limited in the GEOS-3 assimilation system.However,its impact on the ISO spatial structures is obvious.Overall,the results demonstrate a better eastward propagation and a northward propagation of ISO with the TRMM precipitation simulation,indicating that latent heating is very important in exciting the equatorial ISO.  相似文献   

6.
An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 pro ject are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interan-nual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change pro jection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface tem-perature (SST) mean state, seasonal cycle, spatial patterns of Madden-Julian oscillation (MJO) amplitude and tropical cyclone Genesis Potential Index (GPI), global monsoon precipitation pattern, El Ni-no-Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) related SST anomalies. However, the perfor-mances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific mon-soon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the 20th-century global warming and the future change under representative concentration pathways pro jection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.  相似文献   

7.
Impacts of a GCM's Resolution on MJO Simulation   总被引:3,自引:0,他引:3  
Long-term integrations are conducted using the Spectral Atmospheric Model (referred to as SAMIL), which was developed in the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of Atmospheric Physics (IAP), with different resolutions to inves-tigate sensitivity of the Madden-Julian Oscillation (MJO) simulations to the model's resolution (horizontal and vertical). Three resolutions of the model, R15L9, R42L9 and R42L26, with identical physical processes, all produced the basic observed features of the MJO, including the spatiotemporal space-time spectra and eastward propagation. No fundamental differences among these simulations were found. This indicates that the model resolution is not a determining factor for simulating the MJO. Detailed differences among these modeling results suggest, however, that model resolution can substantially affect the simulated MJO in certain aspects. For instance, at a lower horizontal resolution, high frequency disturbances were weaker and the structures of the simulated MJO were better defined to a certain extent. A higher vertical resolution led to a more realistic spatiotemporal spectrum and spatial distribution of MJO precipitation. Meanwhile, increasing the model's resolution improved simulation of the climatology. However, increasing the resolution should be based on improving the cumulus parameterization scheme.  相似文献   

8.
The climatology and interannual variability of sea surface salinity(SSS) and freshwater flux(FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model(BNU-ESM).The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth(MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature(SST) in the equatorial Pacific is identified. As a response to El Ni ?no–Southern Oscillation(ENSO),the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Ni ?no, a positive FWF anomaly in the western-central Pacific(an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Ni ?no is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.  相似文献   

9.
A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.  相似文献   

10.
A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.  相似文献   

11.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

12.
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate.  相似文献   

13.
Summary Pentad mean anomaly maps were used to study the climatology of tropical intraseasonal convection anomaly (TICA) as a dynamic system. One hundred and twenty-two events were identified and classified into three categories: eastward (77), independent northward (27), and westward (18) propagation. The eastward propagation is more active in boreal winter than in summer, while the independent northward propagation, which is not associated with equatorial eastward propagation, occurs in boreal summer from May to October.The eastward moving TICA exhibits three major paths: 1) eastward along the equator from Africa to the mid-Pacific, 2) first eastward along the equator, then either turning north-east to the northwest Pacific or turning southeast to the southwest Pacific at the maritime continent, and 3) the main anomaly moves eastward along the equator with split center(s) moving northward over the Indian and/or western Pacific Oceans. The equatorial Indian Ocean and the western Pacific intertropical convergence zone are preferred geographic locations for their development, while the maritime continent and central Pacific are regions of dissipation.Independent northward propagation is confined to the Indian and western Pacific monsoon regions. Its existence suggests that the mechanism responsible for meridional propagation may differ from that for eastward propagation.The dynamic effect of the equator and the thermodynamic effect of the underlying warm ocean water are basic factors in trapping TICA in the deep tropics, while the annual march of maximum SST (thermal equator) and the monsoon circulation have profound influences on the annual variation and meridional movement of TICA.With 12 FiguresContribution No. 89-11, Department of Meteorology, University of Hawaii.  相似文献   

14.
The CSIRO Mark 3 general circulation model at T63 resolution is used to explore the potential effect of air–sea interaction in enhancing the eastward propagation of the Madden–Julian Oscillation (MJO). Principal component analysis is used to define a seasonal lower-tropospheric wind signal. When the model is coupled with an interactive ocean, the monsoon wind anomalies in December–February (DJF) propagate from the Indian Ocean to the Pacific Ocean. In versions with a thinner mixed layer, the propagation speed approaches that seen in the observational ERA40 data set. However, in the non-interactive model with specified sea surface temperatures (SSTs) there is no propagation. Similar contrasts are seen in other seasons. The upper tropospheric long-wave signal determined through spectral analysis is also more realistic in the coupled model, although power around the 80 day period remains too large. Positive SST anomalies form to the east of low-level convergence, in part due to evaporative flux that is modified by the mean monsoon westerly belt in DJF. Interannual variations in this belt appear to have an effect on the propagation of the wind anomalies in the coupled model, while only the amplitude varies in the non-interactive model. This contrast is also seen in partitions of years by the state of ENSO. Propagation of the MJO signal is faster and extends farther into the Pacific in El Niño years in observations and the coupled model, although model biases, in particular a short westerly belt, appear to limit the effect. It is concluded that air–sea interaction is potentially very important to the MJO and its interannual variability, and that the westerly belt has an influence on its evolution.  相似文献   

15.
An ensemble of twenty four coupled ocean-atmosphere models has been compared with respect to their performance in the tropical Pacific. The coupled models span a large portion of the parameter space and differ in many respects. The intercomparison includes TOGA (Tropical Ocean Global Atmosphere)-type models consisting of high-resolution tropical ocean models and coarse-resolution global atmosphere models, coarse-resolution global coupled models, and a few global coupled models with high resolution in the equatorial region in their ocean components. The performance of the annual mean state, the seasonal cycle and the interannual variability are investigated. The primary quantity analysed is sea surface temperature (SST). Additionally, the evolution of interannual heat content variations in the tropical Pacific and the relationship between the interannual SST variations in the equatorial Pacific to fluctuations in the strength of the Indian summer monsoon are investigated. The results can be summarised as follows: almost all models (even those employing flux corrections) still have problems in simulating the SST climatology, although some improvements are found relative to earlier intercomparison studies. Only a few of the coupled models simulate the El Niño/Southern Oscillation (ENSO) in terms of gross equatorial SST anomalies realistically. In particular, many models overestimate the variability in the western equatorial Pacific and underestimate the SST variability in the east. The evolution of interannual heat content variations is similar to that observed in almost all models. Finally, the majority of the models show a strong connection between ENSO and the strength of the Indian summer monsoon.  相似文献   

16.
吴启蒙  吴立广  曹剑 《大气科学》2022,46(2):251-262
地球系统模式已经逐步成为研究热带气旋(TC)活动气候变化的重要工具之一,之前的研究发现南京信息工程大学地球系统模式(NESM)高分辨率版本可以较好地模拟全球海温分布及TC活动的气候特征.本研究进一步分析了NESM地球系统模式模拟西北太平洋TC活动的年际变化,并与1967~2016年观测的TC活动进行对比.NESM模式高...  相似文献   

17.
运用小波分析方法和相关分析对东亚季的准两年振荡的存在及其与ENSO变率的关系进行了研究,结果指出:东亚季风具有显著的准两年振荡特征,但周期与振幅具有明显的年代际变化,同时东亚季风的QBO过程与ElNino事件具有密切的联系;  相似文献   

18.
This paper investigates the contrasts between strong and weak Madden-Julian Oscillation (MJO) activity over the equatorial western Pacific during winter using the NCEP reanalysis data. It is shown that the MJO over the equatorial western Pacific in winter shows significant interannual and interdecadal variabilities. During the winters with strong MJO activity, an anomalous cyclonic circulation lies east of the Philippines, strong anomalous easterlies control the equatorial eastern Pacific, and anomalous westerlies extend from the Indian Ocean to the western Pacific in the lower troposphere, which strengthens the convergence and convection over the equatorial western Pacific. The moisture convergence in the lower troposphere is also enhanced over the western Pacific, which is favorable to the activity of MJO. Eastward propagation is a significant feature of the MJO, though there is some westward propagation. The space-time spectral power and center period of the MJO are higher during strong MJO activity winters. The anomalous activity of MJO is closely related to the sea surface temperature (SST) and East Asian winter monsoon (EAWM). During strong MJO activity winters, there are positive/negative anomalies at high/low latitudes in both sea level pressure and 500 hPa geopotential height, and the temperature is lower over the central part of the Chinese mainland, which indicates a strong EAWM. China experiences more rainfall between the Yellow and Yangtze Rivers, but less rainfall south of the Yangtze River. The SSTA is negative near the Taiwan Island due to the impact of strong EAWM and shows a La Ni?a pattern anomaly over the eastern Pacific. During the weak MJO activity winters, the situation is reversed.  相似文献   

19.
基于1979—2008年NCEP/CFSR再分析耦合数据集,研究了冬季MJO对ENSO事件的影响。结果表明,在年际时间尺度以及长期的年代际时间尺度上,热带印度洋MJO活动的强弱性都可以影响热带中东太平洋ENSO事件的发生和发展。在年际时间尺度上,ENSO发生前期征兆的赤道中东太平洋的西风爆发事件(Westerly Wind Burst,WWB),作为MJO影响ENSO的主要途径,存在着显著的次季节时间尺度的变化。相对于气候平均的赤道太平洋西部暖池区上升而东部下沉的Walker环流,MJO正位相东传后的西风异常,减弱了低层东风和赤道东太平洋海水上翻。这一上升海流的减弱导致了中东赤道太平洋的海温升高,从而有利于ENSO暖海温事件的发生。而在年代际时间尺度上,MJO范围和强度在1998年前后出现了明显的转变,1998年之前MJO的东移范围更东,强度更强,从而导致了西太平洋西风爆发区的次季节西风异常事件更加显著,在Bjeknes正反馈机制下对应了年代际时间尺度下的强尼诺事件出现,1998年之后则与之相反。冬季MJO对ENSO影响的这一年代际特征主要体现在晚冬季节,而在早冬伴随着印度洋的增暖,MJO强度一直在逐年增加。  相似文献   

20.
The Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2) was used to simulate realistic climates and to study anthropogenic influences on climate change. Specifically, the FGOALS-s2 was integrated with Coupled Model Intercomparison Project Phase 5 (CMIP5) to conduct coordinated experiments that will provide valuable scientific information to climate research communities. The performances of FGOALS-s2 were assessed in simulating major climate phenomena, and documented both the strengths and weaknesses of the model. The results indicate that FGOALS-s2 successfully overcomes climate drift, and realistically models global and regional climate characteristics, including SST, precipitation, and atmospheric circulation. In particular, the model accurately captures annual and semi-annual SST cycles in the equatorial Pacific Ocean, and the main characteristic features of the Asian summer monsoon, which include a low-level southwestern jet and five monsoon rainfall centers. The simulated climate variability was further examined in terms of teleconnections, leading modes of global SST (namely, ENSO), Pacific Decadal Oscillations (PDO), and changes in 19th–20th century climate. The analysis demonstrates that FGOALS-s2 realistically simulates extra-tropical teleconnection patterns of large-scale climate, and irregular ENSO periods. The model gives fairly reasonable reconstructions of spatial patterns of PDO and global monsoon changes in the 20th century. However, because the indirect effects of aerosols are not included in the model, the simulated global temperature change during the period 1850–2005 is greater than the observed warming, by 0.6°C. Some other shortcomings of the model are also noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号