首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
曾明剑  吴海英  王晓峰  蒋义芳 《气象》2016,42(3):280-293
利用逐日4次1°×1°FNL/NCEP分析资料及多普勒天气雷达、地面自动气象站等观测资料,在对近十年江苏梅雨期龙卷天气的环境特征进行合成分析并提炼对流参数特征值后,着重对2013年7月7日发生在安徽天长至江苏高邮一带导致龙卷的对流风暴的形成和结构特征演变进行了分析。结果表明:江淮梅雨期间,地面中尺度气旋的右侧附近(100 km)、对流层低层中尺度低涡右下方约200~300km处和低空急流左后侧之间区域是龙卷易发区;梅雨期大气环流背景为龙卷的发生提供了对流层低层充沛的水汽和有利的不稳定层结与动力条件,低层气旋性涡度在龙卷发生前强烈发展,边界层内强的垂直风切变促进了龙卷风暴内气旋性涡度的迅速增强,而对流层低层辐合的增强将有利于初始对流的触发;但梅雨期龙卷对对流不稳定能量蓄积条件要求低于冰雹和雷暴大风;龙卷对流参数特征值及其与气候平均值的差异性为龙卷天气的短期预报提供了参考依据。引发2013年7月7日龙卷的对流风暴起源于地面辐合线附近,地面辐合及中尺度锋区的增强有利于对流风暴的快速发展,此次系列龙卷是由一个生命史较长的超级单体风暴产生,该对流风暴具有典型超级单体的回波特征,风暴内的中气旋维持2h之久,中气旋相关参数的演变对龙卷的临近预警有较高的参考价值,当中气旋底高较低且中气旋切变值明显增强时,发生龙卷天气的可能性较大。  相似文献   

2.
张桂莲  李一平  江靖  常欣  霍志丽  仲夏  郭炳瑶  贾克寒 《气象》2023,(11):1315-1327
2021年6月25日内蒙古锡林郭勒盟太仆寺旗发生了历史罕见的EF3级强龙卷,导致6人死亡,大量建筑物等严重损毁。利用常规高空和地面观测、区域自动气象观测站、FY4卫星云图、河北省张北CB型多普勒雷达等观测资料,以及NCEP(1°×1°)逐6 h再分析资料对这次强龙卷过程进行分析。结果表明:此次龙卷发生在前倾槽不稳定层结环境背景下,较强的对流层中低层条件不稳定(850 hPa与500 hPa温度垂直减温率约为7.7℃·km-1)、低层丰富的水汽、中等强度的对流有效位能和强的0~6 km垂直风切变为超级单体风暴形成提供了有利环境背景。此外,0~1 km风矢量差为8 m·s-1,抬升凝结高度为1.0 km,为超级单体龙卷的发生提供了相对有利的环境条件。与地面干线伴随的辐合线触发了产生龙卷的母风暴,随后演变为超级单体,其雷达反射率因子呈现典型的钩状回波、低层暖湿气流入流缺口、低层弱回波区和中高层回波悬垂,以及中等强度的中气旋等特征;龙卷的生成和消亡过程中有三个超级单体风暴相继形成,都呈现为孤立的对流风暴形态,龙卷发生在其中一个超级单体钩状回波的顶端,...  相似文献   

3.
利用S波段双偏振雷达、风廓线雷达、L波段探空雷达、区域自动站等观测资料和ERA5再分析资料, 对2019年5月26日发生在华南地区一次季风暴雨中海上龙卷过程的大气条件和雷达特征进行了详细分析。(1)低层辐合、高层辐散、中层短波槽东移的环流特征为龙卷的对流风暴提供了有利的大尺度动力抬升条件, 与大多数陆龙卷的形成机制相似。(2)该龙卷形成的环境条件也与一般非中气旋陆龙卷近似, 具有中等大小的对流有效位能, 对流抑制能量接近0, 为该对流风暴发生发展提供了热力条件, 具有发生龙卷的潜势; 强0~1 km低层风垂直切变和0~6 km深层风垂直切变为该对流风暴发展提供了动力条件, 其中低层风垂直切变远高于过去对陆龙卷低层风垂直切变统计的下限。(3)雷达发现: 龙卷出现前后, TVS(Tornadic Vortex Signature)雷达产品多次定位提醒, 但中气旋产品并未有提醒, 有一定示警作用; 径向速度产品揭示了龙卷正负速度对的发展变化; 龙卷低层旋转速度大值区多位于带状回波前沿, 对应的差分反射率ZDR减小, 相关系数CC较低, 有利于确定龙卷的持续时间和影响范围。   相似文献   

4.
项阳  吴林林 《气象科技》2021,49(4):579-588
利用蚌埠S波段双偏振多普勒雷达资料,对安徽省宿州市2020年7月22日的龙卷天气进行了分析。结果表明:在梅雨期暴雨天气形势下,较低的抬升凝结高度、较强的中低层垂直风切变为龙卷提供了有利的环境背景。龙卷发生在梅雨锋南端的超级单体风暴中,底层的右后方出现钩状回波。风暴参数、中气旋、龙卷涡旋(TVS)特征参数在龙卷过程中的急剧变化,对提前预警和判断龙卷是否发生有较好的指示意义。龙卷发生前单体风暴最大反射率因子、垂直累积液态水、顶高都跃增,底高明显降低,龙卷发生在最大反射率因子高度骤降到风暴底部之时。雷达在龙卷发生前24min探测到中气旋,在42min前探测到TVS。龙卷发生前中气旋顶高跃增、最大切变量高度骤降,龙卷发生在底高降到1km以下,同时顶高骤降、最大切变量高度降到中气旋底部之时。龙卷发生前TVS顶高和最大切变量跃增、最大切变量高度骤降,龙卷发生时顶高骤降,最大切变量高度也随之降到TVS底部。在底层钩状回波末端处观测到零滞后相关系数、差分反射率低值区的龙卷碎片特征。  相似文献   

5.
一次长生命史超级单体风暴的雷达观测特征和维持机制   总被引:1,自引:0,他引:1  
高帆  褚颖佳  胡鹏  刁秀广 《气象科技》2018,46(2):336-342
2016年6月14日一个长生命史的超级单体风暴在山东产生了大范围的冰雹和雷暴大风天气。利用常规观测资料、中尺度自动站资料、多普勒天气雷达资料和风廓线雷达资料对其天气背景、雷达观测特征进行分析,对其维持机制进行探讨。结果表明:在华北冷涡的背景下,在较强的深层垂直风切变和中等强度对流有效位能环境条件下,地面中尺度辐合中心触发生成强对流风暴;维持阶段风暴右前方低层一直存在暖湿气流的入流槽口,垂直结构呈现出经典超级单体的结构特征,中气旋发展深厚且强盛,最大垂直涡度在1.0×10~(-2)s~(-1)以上,每次单体强中心高度的跃升和快速下降均伴有一次地面大冰雹事件的发生;发展和维持阶段地面冷池边界扩张与低层垂直风切变大小相当,达到平衡状态,在风暴前方形成较强的辐合上升运动,大于150m~2·s~(-2)的风暴相对螺旋度环境,风暴沿地面中尺度辐合线移动,这些都是超级单体风暴维持较长生命史的有利条件。  相似文献   

6.
本文利用新一代多普勒天气雷达资料、逐5分钟自动站资料、常规观测和NCEP(1°×1°)再分析资料等,对2021年6月25日发生在内蒙古太仆寺旗的一次强龙卷过程进行分析研究。结果表明,龙卷发生在前倾槽背景下,出现在低层的西南气流当中。龙卷发生的环境场特征为上干冷下暖湿的不稳定大气层结;地面辐合线及干线为强对流提供了触发条件;低抬升凝结高度、强低层垂直风切变和大的对流有效位能为龙卷提供了有利条件。此次龙卷过程由多个超级单体风暴相互作用造成的,雷达回波资料分析显示超级单体出现明显的钩状回波,“V”型缺口,回波悬垂、旁瓣回波的特征,雷达距离龙卷发生地超过100 km,未识别出龙卷涡旋特征,但识别出了中气旋,中气旋最大转动速度达到了15 m/s,为弱到中等中气旋;龙卷发生前基于单体的垂直累积液态水和最大反射率回波顶高有明显的跃增。  相似文献   

7.
一次伴随强烈龙卷的强降水超级单体风暴研究   总被引:42,自引:4,他引:38  
利用徐州多普勒天气雷达、常规观测和地面加密观测资料,对2005年7月30日发生在安徽北部的伴随强烈龙卷和暴雨的强降水超级单体风暴的环境条件和回波结构演变特征进行了详细分析。主要结果如下:(1)该强降水超级单体产生在中等大小的对流有效位能和较大的深层垂直风切变条件下,同时抬升凝结高度很低,边界层内的低层垂直风切变很大,地面存在阵风锋。上述中等程度的对流有效位能值和大的深层垂直风切变有利于超级单体风暴的产生,而大的低层垂直风切变、低的抬升凝结高度和地面阵风锋的存在有利于F2级以上强龙卷的产生。(2)该超级单体的演化可以归结为“带状回波-典型强降水超级单体-弓形回波” 三个阶段。在带状回波阶段,该超级单体的发展从一条狭长对流雨带的变短变粗开始,雨带中间的对流单体内首先有中气旋发展,从4 km左右高度首先出现,然后同时向上和向下发展,前侧入流缺口变得明显,接着雨带南端的单体中也有中气旋发展。在典型强降水超级单体阶段, 雨带南端单体逐渐与中间单体合并,构成一个庞大深厚的强降水超级单体和被包裹在其中的直径12 km左右、深厚强烈的中气旋,然后由于后侧入流的开始出现,低层回波形态层演变为“S”形,而中层回波呈现为螺旋型。(3)龙卷出现在“S” 形回波阶段,在龙卷出现前,有一个龙卷涡旋特征TVS(Tornadic Vortex Signature)出现在中气旋的中心,其对应的垂直涡度值估计为6.0×10-2s-1。龙卷地点上空有很强的风暴顶辐散, 散度值约为0.8×10-2s-1。弓形回波阶段的开始由在弓形回波北部逗点头回波的中心的另一个中气旋形成为标志,原有的中气旋位于弓形回波顶点附近,随后弓形回波的北宽南窄的不对称结构逐渐明显,原有的位于弓形回波顶点附近的中气旋消失, 并出现地面直线型风害。另外,还对此次过程中气旋产生和超级单体形态的演变的可能机制进行了探讨。  相似文献   

8.
苏北地区超级单体风暴环境条件与雷达回波特征   总被引:10,自引:3,他引:7  
利用江苏3个探空站、5部CINRAD/SA型多普勒天气雷达、地面常规与加密自动站等观测资料,分析2005—2009年苏北地区72个超级单体风暴发生的环境条件和多普勒天气雷达回波特征。探空和地面资料分析表明,苏北地区超级单体风暴可以产生在差别相当大的环境条件下:强降水超级单体通常产生在对流有效位能较高和垂直风切变中等的环境下,经典超级单体更多地产生在对流有效位能较高和垂直风切变较强环境下;产生大冰雹和(或)雷暴大风的超级单体,无论是经典还是强降水型超级单体,其环境特征均为0℃层、-20℃等温线高度较低,850—500 hPa温差较大,低层露点不高;产生龙卷特别是F2级以上强龙卷超级单体环境特征常常表现为低层(0—1 km)垂直风切变大、850—500 hPa温差相对较小、抬升凝结高度低、低层露点高,这类超级单体在产生龙卷的同时也常常伴有短时强降水甚至极端短时强降水。多普勒天气雷达资料分析表明,苏北地区超级单体具有持久的中气旋、回波墙和有界弱回波区或弱回波区结构,可以产生大冰雹、龙卷、短时强降水和下击暴流等强对流天气;超级单体的类型主要有经典超级单体、强降水超级单体以及强降水超级单体组成的复合风暴。经典超级单体一般为孤立风暴,中气旋多数情况下位于其右后侧(相对于风暴移动方向),低层有明显的钩状回波和入流缺口,入流缺口之上存在宽大的有界弱回波区,其上有强反射率因子组成的风暴核,最强的反射率因子可达75 dBz;强降水超级单体前侧有入流缺口和旁边粗胖的凸起部分与中气旋相伴,与经典超级单体的钩状回波在形态上区别明显,同样存在有界弱回波区或弱回波区,中气旋环流中有明显的降水回波;强降水超级单体组成的复合风暴内中气旋一般位于其前侧,主要结构与强降水超级单体相似,生命史较长。超级单体结构属性分析表明,绝大多数情况下,苏北地区超级单体风暴的最大反射率因子为55—76 dBz,基于单体的垂直累积液态水含量(VIL)为35—90 kg/m~2,垂直累积液态水含量超过60 kg/m~2时风暴有可能产生大冰雹,特别是在4—6月,冰雹直径随着垂直累积液态水含量的增大而增大,因此,垂直累积液态水含量季节性高值可以用来辨别产生大冰雹的超级单体;绝大多数情况下,中气旋旋转速度大于15 m/s,直径在3—10 km,持续时间超过40 min;中气旋的底越低,直径越小,产生龙卷的可能性越大。  相似文献   

9.
综合利用多普勒雷达、地面自动气象站以及风廓线等观测资料和ERA5再分析资料,对2019年7月3日发生于辽宁开原的超级单体风暴伴随EF4级强龙卷环境条件、多普勒雷达回波特征和形成机理进行详细分析。结果表明:本次过程发生于低层暖湿高层冷干强的热力不稳定环境条件下,在地面干线汇合流场形成地面辐合线附近触发湿对流并发展为伴有龙卷的超级单体风暴。龙卷发生于低层钩状回波附近,多普勒雷达上呈现经典超级单体风暴雷达回波特征,低层强的垂直风切变将水平涡度转化为对流风暴中垂直涡度,强上升运动使得顺流涡度倾斜拉伸,从而龙卷发生前17 min在多普勒雷达2.4°仰角首先出现中气旋结构,随后风暴向南移动过程中,风暴的后侧下沉气流(RFD)将中低层的涡度“压低”致使龙卷接地,因此龙卷发生后1 min在0.5°仰角也出现强中气旋并有类龙卷涡旋特征(TVS),中气旋最强时的旋转速度达到28 m·s^(-1)(强中气旋标准),因此本次龙卷符合“自上而下”I型龙卷特征。由于环境干燥空气夹卷造成水滴强烈蒸发和冷却,使得地面出现了1 h降温达10℃的强冷池,过强的冷池可能在促使龙卷消亡过程中起到关键作用,致使龙卷持续了约30 min后消亡。  相似文献   

10.
2018年6月8日在距台风“艾云尼”中心80 km、160 km的广州市南沙区横沥镇、佛山市南海区大沥镇两地罕见地先后出现了龙卷天气。利用X波段双偏振雷达组网、广州S波段双偏振雷达、风廓线雷达和区域加密自动站等观测资料对两次近距离台风龙卷过程的环境条件和雷达特征进行了分析。环境条件分析表明,两次龙卷发生地位于低层西南急流和东南急流辐合区,所处环境为弱的对流有效位能(CAPE)、低的抬升凝结高度和强的低层垂直风切变环境中,0~1 km垂直风切变值超过15×10-3 s-1。中小尺度雷达特征分析表明:(1)两地龙卷由台风外围微型超级单体引起,超级单体在发展强盛阶段有钩状回波、入流缺口、中层回波悬垂等典型特征,最强反射率因子55~60 dBz,强度≥50 dBz强回波发展高度在4 km以下,微型超级单体有水平尺度2~3 km的中气旋,由于速度模糊影响,仅在南海龙卷发生前9 min广州S波段雷达能自动识别中气旋。(2)与南沙龙卷相联系的中气旋核心高度低,强度进一步加强紧缩导致龙卷发生;而与南海龙卷相联系的中气旋从中层发展,中气旋加强紧缩下降到更低导致龙卷发生。(3)两地弱龙卷发生时广州和南海双偏振雷达没能捕捉到龙卷碎片(TDS)特征,南海X波段雷达能提前30 min监测到入流急流,提前27 min探测出钩状回波等特征,并通过分析ZDR弧和KDP弧可判断低层强盛的上升气流和强的垂直风切变利于风暴的发展。(4)佛山四部X波段组网雷达反演的1 km水平风场可分析出小尺度涡旋结构,对应钩状回波尾端有强的风向切变,这对龙卷发生地点的判断和风暴的流场结构有较好指示意义。   相似文献   

11.
利用常规观测资料、区域自动气象观测站加密观测资料、多普勒雷达资料和NCEP/NCAR 1°×1°再分析资料,对2019年8月16日发生在日照一次龙卷天气过程的天气形势、环境物理量和涡旋特征进行了分析。结果表明:地面β中尺度辐合线和高空冷涡是此次龙卷发生的主要影响系统,较湿的近地面层、较低的抬升凝结高度为龙卷的发生提供了有利的环境条件。地面辐合线上的γ中尺度涡旋在显著深厚湿对流潜势下触发了对流,较大的对流有效位能(convective available potential energy,CAPE)和较强的0~3 km垂直风切变有利于初生对流的发展、合并,形成超级单体风暴。龙卷发生时,超级单体风暴低层右前侧出现钩状回波、入流缺口。较强的风暴单体、深厚持久的中气旋、中气旋强中心和底部迅速下降并重合、气旋性涡旋加强、最大风切变跃增、多个时次体扫出现龙卷涡旋特征(tornadic vortex signature,TVS)是地面龙卷发生的主要特征。对龙卷风暴单体移动起主导作用的因子在不同时段有所不同,前期主要受平流的影响;风暴单体合并的过程中,风暴移动受传播和平流的共同影响;风暴单体完全合并后,引导气流对风暴的移动又起主要作用。  相似文献   

12.
利用常规观测资料、多普勒天气雷达资料和区域加密自动站资料对1713号台风"天鸽"外围的龙卷过程进行分析,结果表明:(1)此次龙卷过程发生在台风外围螺旋云带前部,物理量分析表明广西东南部具有较大的不稳定度能量,抬升凝结高度较低,低层垂直风切变较大,具有利于龙卷发生的环境热力和动力条件。中尺度地面辐合线触发出新生对流单体,该对流单体在高温高湿和强不稳定状态环境中最终发展为龙卷。(2)此次龙卷为微超级单体风暴,具有低层有钩状回波、中高层回波悬垂和有界弱回波区(BWER)等典型超级单体特征,低层钩状回波的演变与龙卷的生消密切相关。(3)中气旋先于低层钩状回波出现,钩状回波形成于强中气旋附近。龙卷发生时中气旋底高在2㎞左右,TVS切变底部高度0.5㎞左右并且不断下降,与龙卷漏斗状云柱高度逐渐下降接地的趋势一致。  相似文献   

13.
利用济南CINRAD/SA-D双偏振天气雷达的探测数据,结合龙卷实地调查资料,对2021年7月11日发生在山东聊城高唐的一次EF3级龙卷风暴的雷达回波演变过程、龙卷风暴单体的结构及龙卷风暴的中气旋(M)、龙卷涡旋特征(TVS)和龙卷碎片特征(TDS)进行分析。结果表明:(1)龙卷发生在高空冷涡及地面气旋共同作用天气形势下,龙卷位于地面气旋中心东偏北方向约200 km处;螺旋状对流云带中2个较强对流单体合并发展,演变成超级单体风暴,其后部下沉气流较强,与强的入流共同作用,诱发了强龙卷。(2)风暴中中气旋的顶高大多在5~7 km之间;龙卷发生前中气旋最大切变平均值为19×10^(-3)s^(-1),龙卷维持期间,中气旋最大切变平均值达到51×10^(-3)s^(-1)。(3)高唐龙卷涡旋底层双偏振参量主要特征是大的水平极化反射率因子,小的甚至负的差分反射率ZDR,小的相关系数CC;TDS时间及空间特征是,底层CC都小于0.7,CC低值区的面积在龙卷生成后随时间明显增大,CC值底层最小,随高度逐渐增大;CC低值区的面积低层和顶层较大,中间层较小;龙卷生成后TDS最大高度随时间逐渐增高,龙卷最强时TDS最高达到4.8 km,之后逐渐降低;龙卷消散后,1.5°以上TDS的特征很快消失,0.5°仰角TDS特征继续维持了大约11 min。  相似文献   

14.
安徽一次强烈龙卷的多普勒天气雷达分析   总被引:49,自引:20,他引:49  
利用多普勒天气雷达资料,对2003年7月8日夜间发生在安徽无为县的强烈龙卷过程进行了详细的分析。该龙卷发生前的主要天气背景是江淮梅雨期暴雨的天气形势:一个东移的高空槽、强烈的对流不稳定和低空的西南风急流。低层垂直风切变很大并且抬升凝结高度较低,有利于强龙卷的产生。产生该强龙卷的对流系统最初是一条位于大片层状云降水区中的长对流雨带。在随后的演变中,对流雨带的南段逐渐消散,北段逐渐变宽,最终成为一个团状的对流系统,而龙卷产生自该系统南端的一个超级单体。最初的中层中气旋形成于7月8日22:49(北京时,下同),相应对流单体的反射率因子尚没有呈现出超级单体的特征。随后中气旋迅速加强,在22:55,反射率因子形态呈现出经典超级单体的特征:明显的低层入流缺口和其左侧的阵风锋,入流缺口位于超级单体移动方向(东北方向)的右后侧,低层的弱回波区和中高层的回波悬垂结构,最大反射率因子超过55 dBz。在龙卷产生前8min,即23:12中气旋达到强中气旋标准,相应的垂直涡度值达到2.3×10-2/s。在龙卷产生前几分钟和龙卷进行过程中,中气旋保持很强,但相应的反射率因子强度减弱,低层入流缺口渐渐消失。在龙卷进行过程中的23:29,雷达速度图像呈现出一个强烈中气旋包裹着一个更小尺度的龙卷式涡旋特征TVS,与TVS对应的垂直涡度值达5.0×10-2/s。上述导致龙卷的中层中气旋局限于4 km以下的低层大气,前后共持续了1 h 49 min,相应超级单体的高反射率因子区局限在6 km以下,属于低质心的对流系统,产生的天气是强烈龙卷,伴随有暴雨,但没有冰雹。文中还对此次龙卷的生成机制进行了探讨。  相似文献   

15.
相似环流背景下海南两次不同类型强对流天气对比研究   总被引:4,自引:3,他引:1  
2016年6月5日和6日海南岛处在类似的环流背景下,5日海南出现了大范围8级以上阵风且伴有EF2级龙卷,而次日以短时强降水为主。为了研究两日产生不同类型强对流天气的原因,基于常规地面-高空观测、海南逐10 min的地面加密观测、海口多普勒雷达观测、NCEP-GFS 0.5°×0.5°分析资料进行对比分析,结果表明:(1)5日整层大气相对较干(可降水量为49 mm)且中层干层尤为清晰(700—500 hPa平均相对湿度41%),925—700 hPa温度垂直递减率为7.25℃/km,有利于产生强下沉气流及冷池形成,从而产生雷暴大风天气,而6日气层高湿,可降水量为60 mm,环境风弱,风暴移速慢,有利于产生强降水;(2)两日均属于弱的环境背景气流下的对流,相对而言,5日0—3 km风垂直切变均较6日大,有利于形成飑线;(3)结构分析表明5日对流风暴伴有较强阵风出流,较强的风垂直切变加之多个单体阵风出流合并抬升下,产生了持续1.5 h的飑线,并出现了弓形回波,而6日为低质心一般单体且阵风出流相对弱,尽管多个单体合并成了准线性的风暴,其持续时间亦与一般单体生命史相当;(4)5日对流抑制能量相对较大,需较强的地面辐合抬升和午后强烈升温触发雷暴,雷暴触发后强烈发展;6日对流抑制能量近乎为0,弱的海风锋辐合及热力作用均触发对流;(5)此次龙卷过程的风垂直切变与典型超级单体龙卷差异显著,产生龙卷的低层中气旋出现时间与龙卷发生时间仅差3 min,故提前预警龙卷的可能性极小。   相似文献   

16.
区域暴雨过程中两次龙卷风事件分析   总被引:19,自引:9,他引:10  
利用新一代多普勒雷达资料、常规观测和NCEP等资料对2010年7月17和19日河南两次龙卷过程进行了详细分析.结果如下:(1)龙卷发生的天气背景是:两次龙卷均发生在副热带高压边缘西南气流影响河南出现区域暴雨和大暴雨过程中,高层为青藏高压脊北侧和高空急流入口区右后侧强辐散区,中低层有低涡、切变线、急流,龙卷发生在地面β中低压气旋的东南象限,距气旋中心约50 km处.(2)龙卷发生的环境场特征:对流有效位能大于1000J/kg,大气层结不稳定,K指数大于36℃,发生强龙卷的SWEAT指数在400左右,0-1.5 km垂直风矢量切变达15m/s,而抬升凝结高度很低(0-300 m).(3)雷达回波和特征参数分析结果为:两次龙卷均发生在低涡东南侧的β中尺度螺旋雨带上,该回波带强度50 dBz左右,顶高9-12 km,龙卷是由该回波带中部的微型超级单体产生,垂直剖面上低层有明显的弱回波上升气流区,螺旋雨带中部向东凸起的强降水下沉气流和上升入流交界处是龙卷易出现的关键区域.速度图上,γ中尺度气旋系列先后经历了三维相关切变、中气旋、龙卷涡旋特征的演变过程.中气旋提前于龙卷发生前0.5-1 h出现,这对估计和预警龙卷很有意义.中气旋和龙卷涡旋特征参数分析结果是:中气旋和龙卷涡旋特征(TVS)底的高度都在1 km以下,TVS底和中气旋底高度相当或略低一些,F2级龙卷底高<0.5 km,TVS顶的高度一般在2-4 km,中气旋顶高一般2-3 km;从最大切变值来看,中气旋最大切变一般在(1.0-4.0)×10-2 s-1,TVS最大切变值一般为(2.0-5.0)×10-2 s-1,最大切变高度平均出现在0.8-0.9 km,F2级龙卷最大切变高度一般在0.5 km.就F1和F2两次龙卷过程比较看,F2龙卷特征底和顶的高度都低于F1龙卷,最大切变值F2龙卷比F1龙卷大一倍,出现在低层大的切变更容易造成严重的龙卷灾害.根据局限于低层中气旋和TVS系列性、移动性、持续性的特点明确了区域暴雨中预警龙卷的思路.最后对区域暴雨过程中出现龙卷的原因进行了探讨.  相似文献   

17.
1522号台风“彩虹”外围佛山强龙卷特征分析   总被引:2,自引:0,他引:2  
2015年10月4日15:28-16:03(北京时间,下同),强龙卷自东南向西北方向影响了佛山市顺德、禅城和南海区的十多个村居,造成严重灾害。利用常规观测资料、自动气象站资料、广州多普勒雷达资料、风廓线资料等,对这次强龙卷过程进行分析。(1)强龙卷发生在1522号台风"彩虹"外围螺旋云带中,龙卷发生地位于台风中心的45°方向约340~360 km处。(2)大尺度环境场利于龙卷的发生。低空急流、低空强的垂直风切变和低的抬升凝结高度均利于龙卷的发生,高层辐散、低层辐合,上干下湿的不稳定层结,弱冷空气的低层入侵等提供了很好的动力条件。(3)地面中尺度辐合线是强龙卷发生的抬升机制之一,珠三角喇叭口地形以及佛山东南低、西北高的地形有利于低层辐合的加强。(4)在螺旋雨带中发展加强的超级单体风暴发展至强盛阶段,雷达上探测到典型的钩状回波、入流缺口等特征;中气旋由弱中气旋加强到强中气旋,由中层向低层发展且切变不断增强时,龙卷触地或继续加强。(5)此次强龙卷是发生在中气旋和TVS底高顶高下降,切变急剧增强期间,龙卷发生时强中气旋底高距离地面小于1 km,TVS底高低于500 m,龙卷发生前16 min出现弱中气旋,龙卷发生前4 min出现强中气旋并伴有TVS特征;TVS的底高、顶高明显下降,最强切变剧增是龙卷迅速增强的指标。  相似文献   

18.
广西一次特大暴雨的MCC演变过程及结构特征分析   总被引:1,自引:0,他引:1  
利用Micaps、NCEP再分析资料、FY-2C卫星和多普勒雷达等资料,对2010年6月初广西-次特大暴雨过程进行了分析.结果表明:(1) 850 hPa低涡切变、500 hPa高原槽和地面静止锋是此次强降雨的主要影响系统.较强的能量锋区、中低层明显的对流不稳定层结及高层下伸呈漏斗状分布的θsc和明显的湿度锋是中尺度对流系统产生的有利天气模型,而高对流有效位能、较低的自由对流高度、较大的低层湿度和垂直风切变,有利于强降水超级单体的发生、发展.(2)贵州西部-河池向东南方向移动的中尺度对流系统(MCS)云团与桂东南西北上的MCS云团在桂中合并后发展为中尺度对流复合体(MCC),该MCC在桂中长时间停滞后缓慢东移、南压是此次过程的主要云图特征.(3)雷达回波显示,此次过程期间广西中西部地区形成了大范围的积层混合型降雨回波,其入流区呈西北-东南向的强回波带上有多个强对流风暴发展,强回波带前期长时间稳定少变及后期缓慢偏东移造成的“列车效应”,是广西中西部地区出现大范围暴雨-特大暴雨和强雷电天气的重要原因.位于来宾市强降水超级单体风暴属于低质心对流系统,在发展阶段,风暴呈超级单体回波钩状结构,并包含着一个与低层弱回波相联系的前侧“V”形缺口,相应的径向速度图上出现弱中气旋;在强盛阶段,风暴呈波状,反射率因子由低往高向低层入流倾斜,其有前侧和左后侧分别存在“V”形缺口,低层入流位于风暴前侧的“V”形缺口上,相应的径向速度图上是一个中等强度、发展成熟的中气旋,后侧有较强的下沉后侧入流.  相似文献   

19.
2013年3月20日广东东莞罕见龙卷冰雹特征及成因分析   总被引:1,自引:0,他引:1  
利用常规观测、NCEP/NCAR再分析、多普勒天气雷达及自动气象站资料等,对2013年3月20日发生在东莞的一次罕见龙卷、冰雹等致灾性强对流天气过程进行分析。结果表明:1)龙卷过境时的单站气压、温度、风向风速与雷雨大风过境时明显不同,前者具有较典型的龙卷特征。2)华南地区高低空强的风随高度增大的垂直变化、上干下湿的位势不稳定层结以及低层高湿、增温为对流天气发展提供了有利的环境条件,冷空气南压和近地面边界层中小尺度辐合系统为其提供了触发机制。3)中等强度的对流有效位能(CAPE)、强的0-6 km深层垂直风切变以及较强的0-1 km低层垂直风切变为龙卷产生提供了可能性。4)龙卷、冰雹强对流风暴的发展加强与近地面边界层中小尺度辐合系统加强有密切关系。5)同时出现冰雹、大风、龙卷时,最强回波为72 dBz;龙卷出现在超级单体的钩状回波附近,更靠近后侧V形缺口;多时次观测到三体散射(TBSS)回波,与降雹对应;反射率垂直剖面图上可见明显的低层弱回波区、中高层回波悬垂,有界弱回波区(BWER)先于龙卷20多分钟出现。径向速度图上,龙卷出现时超级单体风暴同时具有龙卷涡旋特征(TVS)和中气旋特征。  相似文献   

20.
东北冷涡背景下一次龙卷过程的观测分析   总被引:3,自引:3,他引:0       下载免费PDF全文
2012年6月12日在吉林省白城市洮北区发生一次龙卷过程 (简称“612”龙卷),对此次龙卷过程天气形势和雷达资料分析结果表明:龙卷发生在高空冷涡的东南象限、中高空急流北侧、低空急流左侧的对流不稳定区域及地面较暖湿的环境中,大气对流参数计算结果显示龙卷过程低层 (0~1 km) 的垂直风切变较强 (为6.0×10-3s-1),抬升凝结高度较低 (低于1 km),且龙卷发生前对流有效位能较大。同时,龙卷过程超过50 dBZ的强核高度均在4 km以下,为低质心的对流系统,龙卷产生于一条带状回波与一近似团状回波合并加强后的强回波带中,并逐渐演变成“S”型,伴有“V”型缺口,中心最强值达61 dBZ。根据多普勒天气雷达导出产品并结合径向速度图反映出“612”龙卷是发生在以龙卷涡旋特征为主的尺度较小且垂直涡度较大 (约为3.65×10-2~3.83×10-2s-1) 的强对流风暴中,持续时间较短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号