首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With the gradual yet unequivocal phasing out of ozone depleting substances(ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery of the ozone layer is predicted in this century. However, strong volcanic activity can also cause ozone depletion that might be severe enough to threaten the existence of life on Earth. In this study, a transport model and a coupled chemistry–climate model were used to simulate the impacts of super volcanoes on ozone depletion. The volcanic eruptions in the experiments were the 1991 Mount Pinatubo eruption and a 100 × Pinatubo size eruption. The results show that the percentage of global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% compared to two years before the eruption and 6.4% in tropics. An identical simulation, 100 × Pinatubo eruption only with natural source ODSs, produces an ozone depletion of 2.5% compared to two years before the eruption, and with 4.4% loss in the tropics. Based on the model results,the reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruption.  相似文献   

2.
A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly.  相似文献   

3.
The climate changes that occured following the volcanic eruption of Mount Pinatubo in the Phillippines on 15 June 1991 have been simulated using the ARPEGE atmosphere general circulation model (AGCM). The model was forced by a reconstructed spatial-time distribution of stratospheric aerosols intended for use in long climate simulations. Four statistical ensembles of the AGCM simulations with and without volcanic aerosols over a period of 5 years following the eruption have been made, and the calculated fields have been compared to available observations. The model is able to reproduce some of the observed features after the eruption, such as the winter warming pattern that was observed over the Northern Hemisphere (NH) during the following winters. This pattern was caused by an enhanced Equator-to-pole temperature gradient in the stratosphere that developed due to aerosol heating of the tropics. This in turn led to a strengthening of the polar vortex, which tends to modulate the planetary wave field in such a way that an anomalously positive Arctic Oscillation pattern is produced in the troposphere and at the surface, favouring warm conditions over the NH. During the summer, the model produced a more uniform cooling over the NH.  相似文献   

4.
The influence of various cloud parameters and the interactions with the ground albedo and the solar zenith angle have been studied by means of model simulations. The radiative transfer model suitable for a cloudy atmosphere as well as for a clear atmosphere has been developed on the basis of the Discrete Ordinate Method. This study leads to a general understanding for cloudy atmospheres: in the presence of a uniform cloud, the cloud scattering is dominant to molecular and aerosol scattering, and it is also wavelength-independent; the ratio of transmitted irradiance in a cloudy atmosphere to that in the background clear atmosphere is independent of cloud height and solar zenith angle. That’s to say, the radiation downwelling out of a cloud is quite isotropic; it decreases approximately exponentially with the cloud optical depth at a rate related to the ground albedo; the reflected irradiance at the top of the atmosphere is dependent on cloud optical depth as well as on solar zenith angle, but not on ground albedo for clouds of not very thin optical depth.  相似文献   

5.
Three forms of atmospheric energy, i.e., internal, potential, and latent, are analyzed based on the historical simulations of 32 Coupled Model Intercomparison Project Phase 5(CMIP5) models and two reanalysis datasets(NCEP/NCAR and ERA-40). The spatial pattern of climatological mean atmospheric energy is well reproduced by all CMIP5 models. The variation of globally averaged atmospheric energy is similar to that of surface air temperature(SAT) for most models. The atmospheric energy from both simulation and reanalysis decreases following the volcanic eruption in low-latitude zones. Generally, the climatological mean of simulated atmospheric energy from most models is close to that obtained from NCEP/NCAR, while the simulated atmospheric energy trend is close to that obtained from ERA-40. Under a certain variation of SAT, the simulated global latent energy has the largest increase ratio, and the increase ratio of potential energy is the smallest.  相似文献   

6.
Volcanic eruption is an important external forcing factor of climate change on time scale frommonth to hundred years.In this paper,the climatic effect of the last large historical eruption ofTianchi volcano,which happened in 1229 AD,has been investigated with a two-dimensionalenergy balance model.Taking Mt.Pinatubo volcano and Changbai Mountain-Tianchi volcano forexample,the numerical simulation on time scale from months to years indicates that such largeeruptions may have significant impacts on global climate.Based on the simulation results,it issuggested that the last large eruption of Tianchi volcano should be responsible for the abruptclimate change event,which began in the period from 1230 to 1260 AD.  相似文献   

7.
Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(SST).In this study,the contribution of TC track changes to the interannual variations of intense hurricane activity in the North Atlantic basin is evaluated through numerical experiments.It is found that that observed interannual variations of the frequency of intense hurricanes during the period 1958–2017 are dynamically consistent with changes in the large-scale ocean/atmosphere environment.Track changes can account for~50%of the interannual variability of intense hurricanes,while no significant difference is found for individual environmental parameters between active and inactive years.The only significant difference between active and inactive years is in the duration of TC intensification in the region east of 60°W.The duration increase is not due to the slow-down of TC translation.In active years,a southeastward shift of the formation location in the region east of 60°W causes TCs to take a westward prevailing track,which allows TCs to have a longer opportunity for intensification.On the other hand,most TCs in inactive years take a recurving track,leading to a shorter duration of intensification.This study suggests that the influence of track changes should be considered to understand the basin-wide intensity changes in the North Atlantic basin on the interannual time scale.  相似文献   

8.
In this paper,the synoptic-climatology of Meiyu in East Asia is discussed.It is proposed that the location of the rain band of Meiyu is stable from the viewpoint of climatology,even though the active(wet)and break(dry)Meiyu are influenced by synoptic systems.The duration and the onset and retreat dates of Meiyu exhibit tremendous interannual variabilities,and thus,they are almost unpredictable in seasonal climate prediction.The Meiyu has been used as a synoptic concept and applied to the operational forecast for many decades by meteorological agencies in East Asian countries.As a result,the prediction of the onset and retreat dates of Meiyu has become an important operational work for meteorological services.This has also misled the public’s and scientists’attention.The northward propagation of the East Asian summer monsoon(EASM)surge associated with the intraseasonal oscillation is closely related to the active and break Meiyu.The activities and propagation of the EASM surge modulate the active/break Meiyu that cause concentrative severe precipitation processes and floods or droughts;hence,the authors suggest changing the current forecasting methodology of Meiyu.It is more meaningful from the scientific as well as application viewpoints to establish the monitoring and forecasting of the EASM surge to replace the current operational forecast of Meiyu after the seasonal progress enters the climatological Meiyu period in a year.  相似文献   

9.
Using the daily average of the NCEP/DOE AMIP-II reanalysis data from 1979 to 2005 and the characteristics of monsoon troughs in the western North Pacific,we established an intensity index and a location index to describe the activity of the monsoon troughs in three different regions and their impacts on tropical cyclones generated therein(MTTCs).The behavior of the monsoon troughs was analyzed.The following conclusions are obtained:(1)The established monsoon trough intensity index has a positive correlation to the location index,indicating that stronger monsoon trough intensity corresponds to more northward location.(2)Monsoon trough intensity exhibits significant interannual variation,with obvious periods of 4–5 years prior to 1994 and 2–3 years afterwards.(3)The affecting factors on monsoon trough intensity are different with areas.The preceding SST anomaly results in anomalous atmospheric circulation, leading to the anomaly of monsoon trough intensity in different areas.(4)The frequency of cyclogenesis and location anomalies of the MTTC are closely related to the intensity and location of the monsoon trough. Most of the anomalously less MTTC years coincide with the years with a weak general monsoon trough and weak regional monsoon troughs.The anomalously more MTTC years are associated with both a strong general monsoon trough and a weak general monsoon trough combined with a strong one over the South China Sea,though with a larger probability for the latter.(5)The interseasonal variation of the intensity of monsoon troughs provides favorable conditions for TC generation and development.The monsoon trough is in the active periods of both quasi-biweekly 10 to 20 day and 30 to 60 day oscillations,which is favorable for MTTC occurrence.  相似文献   

10.
Using a barotropic, steady and linearised vorticity equation and using 250 hPa observed basic flow and global divergence fifeld ffrom the active summer monsoon phase (00 GMT 26 June-12 GMT 29 June) 1979, the dynamical effects of linear absolute vorticity advection, vorticity generation due to divergence and vorticity dissipation due to frictional damping have been tested to understand their influence on Southern Asiatic High (SAH). The key experimental results art: (1) The SAH, one of the maior planetary-scale disturbances, is generated from the upper basic flow by the forcing of the upper tropospheric divergence over southeast Asia during the active summer monsoon phase, (2) Linear absolute vorticity advection and frictional damping of vorticity play an important role in the determination of the location of the SAH. (3) The destruction and recovery of planetary-scale geostrophic balance is an important mechanism for the west-east oscillation of the SAH.  相似文献   

11.
In this paper,data of solar direct spectral radiance observation in summer and autumn of 1990 and 1991 were usedto derive the average atmospheric extinction spectra for very clear days each year.The difference of these two extinctionspectra is obvious and considered as the contribution of volcanic cloud resulting from Pinatobu's volcanic eruption inmiddle June of 1991.This average size distribution of volcanic cloud was retrieved from the difference spectra and givenin this paper which will be useful for estimation and modeling of the effects of volcanic eruption.  相似文献   

12.
Based on the Joint Typhoon Warning Center (JTWC) best-track dataset between 1965 and 2009 and the characteristic parameters including tropical cyclone (TC) position, intensity, path length and direction, a method for objective classification of the Northwestern Pacific tropical cyclone tracks is established by using K-means Clustering. The TC lifespan, energy, active season and landfall probability of seven clusters of tropical cyclone tracks are comparatively analyzed. The characteristics of these parameters are quite different among different tropical cyclone track clusters. From the trend of the past two decades, the frequency of the western recurving cluster (accounting for 21.3% of the total) increased, and the lifespan elongated slightly, which differs from the other clusters. The annual variation of the Power Dissipation Index (PDI) of most clusters mainly depended on the TC intensity and frequency. However, the annual variation of the PDI in the northwestern moving then recurving cluster and the pelagic west-northwest moving cluster mainly depended on the frequency.  相似文献   

13.
Statistic and typical-year composition methods are used to study the northwest Pacific typhoon activities in relation with the EI Niño and La Niña events. The result indicates that the typhoon tends to be inactive in the EI Niño years and active in the La Niña years and it is also dependent on the onset and ending time and intensity of the events and areas of genesis of typhoons. With statistic features of the frequency of typhoon activity in the EI Niño and La Niña years and the time-lag correlation between the frequency and sea surface temperature(SST), useful information is provided for the prediction of typhoon occurrence. In addition, the singular values disassemble(SVD)method is applied to study the correlation between the geopotential field and SST field. The result shows that the air-sea coupling in the EI Niño years is unfavorable for the typhoon to develop. Which take place with a smaller number. Opposite situations are found with the La Niña years.  相似文献   

14.
The global three-dimensional variational (3D-Var) data assimilation is implemented on a new quasi-uniform overset (Yin-Yang) grid on sphere. As a quasi-uniform spherical grid, it covers the sphere by overlapping two perpendicularly oriented grid components which is nothing but low latitude region of the usual latitude-longitude grid. Based on this characteristic of the Yin-Yang grid, it enables us to implement the regional 3D-Var system efficiently and accurately on the Yin or Yang component grid, respectively. The global analysis could update directly from the regional analysis since they have the same configurations like the precondition of eigenvalue decomposition for vertical direction, recursive filtering for horizontal direction, minimization method and observation operator and so on. However, the balance equation and vector wind are needed to be paid more attention on the Yin grid analysis due to its coordinate transformation. How to spread the observation information near the boundary of Yin and Yang grid is a key to the 3D- Var analysis. Extending double the horizontal correlation length distance in the overset boundary of Yin and Yang grid has successfully solved the problem. The results show that the analysis on the Yin-Yang grid is reasonable and similar to the result on the latitude-longitude (LAT-LON) grid. This paper provides a promising strategy for the development of a 3D-Var global system for overset grids.  相似文献   

15.
This paper describes the construction of a 0.5°×0.5°daily temperature dataset for the period of 1961- 2005 over mainland China for the purpose of climate model validation. The dataset is based on the in- terpolation from 751 observing stations in China and comprises 3 variables: daily mean,minimum,and maximum temperature.The"anomaly approach"is applied in the interpolation.The gridded climatology of 1971-2000 is first calculated and then a gridded daily anomaly for 1961-2005 is added to the climatologY to o...  相似文献   

16.
Comparative analysis is carried out by using finite-domain power spectrum and lagged regression methods for the propagating characteristics and air-sea interaction processes of intraseasonal oscillations (ISOs) in the Asia to western Pacific (AWP) region during the boreal summer between the active and inactive tropical cyclone (TC) years from 1979 to 2004.The results show as follows.(1) There exist more significant eastward propagating characteristics of the ISO in the active TC years over the whole AWP region.The ISOs of convection propagate zonally with more eastward extension in the years with active tropical cyclone activities,during which the 20-60-day period is strengthened,western Pacific becomes an area with evident characteristics of the propagation that is closely related to TC activities.(2) The air-sea interaction processes are the same in both active and inactive TC years,and the energy exchanges between the air and the sea play a role in maintaining the northwestward propagation of ISOs.(3) The air-sea interaction is more intensive in the active TC years than in the inactive ones.It is particularly true for the latent heat release by condensation as the result of convection,which may be one of the reasons resulting in significant differences in characteristics of ISOs between the active and inactive TC years.  相似文献   

17.
The prevailing mesoscale model MM5 (V3) is used to simulate a heavy rain case caused by interaction between a move-in front and topographical heterogeneities on Taiwan Island. It is found that both thermodynamic and dynamic fields along the front are heterogeneous in time and space. The heterogeneity becomes more significant as the effect of topography is added on. The heterogeneous distribution of physical variables along the front is the main reason for the heterogeneous frontal rain band; the optimum cooperation of the low level and upper level jet is another reason for the development of the rain band.Topography can strengthen the rainfall and causes extremely heavy rain cells. Updraft induced by topography extends to a rather low level, while the uplifted air by frontal circulation can reach to higher levels.The quasi-steady topographic circulation overlaps the frontal circulation when the front moves over Taiwan Island; the advantageous cooperation of various mesoscale conditions causes the large upward velocity on the windward side of the island.  相似文献   

18.
Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the “east sum of the error absolute value” as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network.  相似文献   

19.
We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months and years. TC appears in all months except March, and the most TC quantity in a year is 11, the least is 1 and 6.2 on average. The most TC quantity in a month is 5 and the least is 0. TC lands most in August and no TC lands on Chinese continent from December to the following April. The primary landing area is between Shantou and Hainan Island. The sustaining period of TC is usually between 4 days to 7days, and the longest is 19 days. Only 15% of the TC forming in the South China Sea can intensify to typhoon, and they all form in the ocean area deeper than 150m. The South China Sea is the ocean area over which the TC occurs frequently.  相似文献   

20.
This paper improves Bannon's work on the quasi-geostrophic frontogenesis in a horizontal deformation field. By setting the lower boundary condition for the equation of potential temperature on the realistic topography instead of on z = 0, a general solution for the temperature field is derived after applying conformal mapping to the equation for the potential temperature, the vertical velocity and divergence field are also calculated. The general characteristics for the frontogenetic process still are frontolytic for warm front and frontogenetic for cold front in downstream of a mountain and the reverse is true upstream of a mountain, but more fine spatial structure of the temperature field and frontogenetic characteristics than Bannon's are obtained near surface because of the treatment of lower boundary condition. It is concluded that the frontogenetic characteristics are related to the translating speed of the deformation field with respect to the topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号