首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ensemble of nine experiments with the same interannually varying sea surface temperature (SST), as boundary forcing, and different initial conditions is used to investigate the role of tropical oceans in modulating precipitation variability in the region of La Plata Basin (LPB). The results from the ensemble are compared with a twentieth-century experiment performed with a coupled ocean-atmosphere model, sharing the same atmospheric component. A rotated empirical orthogonal functions analysis of South America precipitation shows that the dominant mode of variability in spring is realistically captured in both experiments. Its principal component (RPC1) correlated with global SST and atmospheric fields identifies the pattern related to El Niño Southern Oscillation and its large-scale teleconnections. Overall the pattern is well simulated in the tropical southern Pacific Ocean, mainly in the ensemble, but it is absent or too weak in other oceanic areas. The coupled model experiment shows a more realistic correlation in the subtropical South Atlantic where air-sea interactions contribute to the relationship between LPB precipitation and SST. The correspondence between model and data is much improved when the composite analysis of SST and atmospheric fields is done over the ensemble members having an RPC1 in agreement with the observations: the improvement relies on avoiding climate noise by averaging only over members that are statistically similar. Furthermore, the result suggests the presence of a high level of uncertainty due to internal atmospheric variability. The analysis of some individual years selected from the model and data RPC1 comparison reveals interesting differences among rainy springs in LPB. For example, 1982, which corresponds to a strong El Niño year, represents a clean case with a distinct wave train propagating from the central Pacific and merging with another one from the eastern tropical south Indian Ocean. The year 2003 is an example of a rainy spring in LPB not directly driven by remote SST forcing. In this case the internal variability has a dominant role, as the model is not able to reproduce the correct local precipitation pattern.  相似文献   

2.
Prediction of the Pacific sea surface temperature (SST) anomaly in the coming decades is a challenge as the SST anomaly changes over time due to natural and anthropogenic climate forcing. The climate changes in the mid-1970s and late-1990s were related to the decadal Pacific SST variability. The changes in the mid-1970s were associated with the positive phase of decadal El Niño-Southern Oscillation (ENSO)-like SST variation, and the changes in the late-1990s were related to its negative phase. However, it is not clear whether this decadal SST variability is related to any external forcing. Here, we show that the effective solar radiation (ESR), which includes the net solar radiation and the effects of volcanic eruption, has modulated this decadal ENSO-like oscillation. The eastern Pacific warming (cooling) associated with this decadal ENSO-like oscillation over the past 139 years is significantly related to weak (strong) ESR. The weak ESR with strong volcanic eruption is found to strengthen the El Niño, resulting in an El Niño-like SST anomaly on the decadal time scale. The strong eruptions of the El Chicho’n (1982) and Pinatubo (1991) volcanoes reduced the ESR during the 1980s and 1990s, respectively. The radiation reduction weakened the Walker circulation due to the “ocean thermostat” mechanism that generates eastern Pacific warming associated with a decadal El Niño-like SST anomaly. This mechanism has been confirmed by the millennium run of ECHO-G model, in which the positive eastward gradient of SST over the equatorial Pacific was simulated under the weak ESR forcing on the decadal time scale. We now experience a reversal of the trend in the ESR. The strong solar radiation and lack of strong volcanic eruptions over the past 15 years have resulted in strong ESR, which should enhance the Walker circulation, leading to a La Niña-like SST anomaly.  相似文献   

3.
The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.  相似文献   

4.
We analyse the differences in the properties of the El Niño Southern Oscillation (ENSO) in a set of 17 coupled integrations with the flux-adjusted, 19-level HadCM3 model with perturbed atmospheric parameters. Within this ensemble, the standard deviation of the NINO3.4 deseasonalised SSTs ranges from 0.6 to 1.3 K. The systematic changes in the properties of the ENSO with increasing amplitude confirm that ENSO in HadCM3 is prevalently a surface (or SST) mode. The tropical-Pacific SST variability in the ensemble of coupled integrations correlates positively with the SST variability in the corresponding ensemble of atmosphere models coupled with a static mixed-layer ocean (“slab” models) perturbed with the same changes in atmospheric parameters. Comparison with the respective coupled ENSO-neutral climatologies and with the slab-model climatologies indicates low-cloud cover to be an important controlling factor of the strength of the ENSO within the ensemble. Our analysis suggests that, in the HadCM3 model, increased SST variability localised in the south-east tropical Pacific, not originating from ENSO and associated with increased amounts of tropical stratocumulus cloud, causes increased ENSO variability via an atmospheric bridge mechanism. The relationship with cloud cover also results in a negative correlation between the ENSO activity and the model’s climate sensitivity to doubling CO2.  相似文献   

5.
Indian summer monsoon (ISM) variability is forced from external factors (like the El Niño Southern Oscillation, ENSO) but it contains also an internal component that tends to reduce its potential for predictability. Large-scale and local monsoon indices based on precipitation and atmospheric circulation parameters are used as a measure of ISM variability. In a 9-members ensemble of AMIP-type experiments (with same boundary SST forcing and different initial conditions) their potential predictability is comparable using both local and large-scale monsoon indices. In the sample analyzed, about half of more predictable monsoon years coincide with El Niño and/or positive Indian Ocean Dipole (IOD) events. Summer monsoon characteristics during ENSO and IOD years are analyzed through composites computed over a three years period (i.e. one year before and one year after the event peak) to investigate the mutual relationship between the events lagged in time. The connection between ISM and IOD is mostly confined in the summer and autumn, while that with ENSO is stronger and extends more in time. In the coupled model results the IOD influence on the monsoon is large, even because in the model IOD events are intense and easily reproduced due to a strong air-sea feedback in the eastern side of the basin. Monsoon seasons preceding or following an El Niño or a La Niña event are not exactly symmetric, even in terms of their biennial character. In most of the cases, both in reanalysis and model, El Niño and positive IOD events tend to co-occur with larger anomalies either in the Indo-Pacific ocean sector or over India, while La Niña and negative IOD do not. From the observed record, the ENSO-IOD correlation is positive strong and significant since mid-60s and it may correspond with either strong or weak ENSO-monsoon relationship and with strong or weak IOD-monsoon relationship. A main difference between those periods is the relationship between Indian monsoon rainfall and SST in other ocean basins rather than the Indo-Pacific sector alone.  相似文献   

6.
We analyze how the characteristics of El Niño-Southern Oscillation (ENSO) are changed in coupled ocean–atmosphere simulations of the mid-Holocene (MH) and the Last Glacial Maximum (LGM) performed as part of the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2). Comparison of the model results with present day observations show that most of the models reproduce the large scale features of the tropical Pacific like the SST gradient, the mean SST and the mean seasonal cycles. All models simulate the ENSO variability, although with different skill. Our analyses show that several relationships between El Niño amplitude and the mean state across the different control simulations are still valid for simulations of the MH and the LGM. Results for the MH show a consistent El Niño amplitude decrease. It can be related to the large scale atmospheric circulation changes. While the Northern Hemisphere receives more insolation during the summer time, the Asian summer monsoon system is strengthened which leads to the enhancement of the Walker circulation. Easterlies prevailing over the central eastern Pacific induce an equatorial upwelling that damps the El Niño development. Results are less conclusive for 21ka. Large scale dynamic competes with changes in local heat fluxes, so that model shows a wide range of responses, as it is the case in future climate projections.  相似文献   

7.
We investigate the effects of realistic oceanic initial conditions on a set of decadal climate predictions performed with a state-of-the-art coupled ocean-atmosphere general circulation model. The decadal predictions are performed in both retrospective (hindcast) and forecast modes. Specifically, the full set of prediction experiments consists of 3-member ensembles of 30-year simulations, starting at 5-year intervals from 1960 to 2005, using historical radiative forcing conditions for the 1960–2005 period, followed by RCP4.5 scenario settings for the 2006–2035 period. The ocean initial states are provided by ocean reanalyses differing by assimilation methods and assimilated data, but obtained with the same ocean model. The use of alternative ocean reanalyses yields the required perturbation of the full three-dimensional ocean state aimed at generating the ensemble members spread. A full-value initialization technique is adopted. The predictive skill of the system appears to be driven to large extent by trends in the radiative forcing. However, after detrending, a residual skill over specific regions of the ocean emerges in the near-term. Specifically, natural fluctuations in the North Atlantic sea-surface temperature (SST) associated with large-scale multi-decadal variability modes are predictable in the 2–5 year range. This is consistent with significant predictive skill found in the Atlantic meridional overturning circulation over a similar timescale. The dependency of forecast skill on ocean initialization is analysed, revealing a strong impact of details of ocean data assimilation products on the system predictive skill. This points to the need of reducing the large uncertainties that currently affect global ocean reanalyses, in the perspective of providing reliable near-term climate predictions.  相似文献   

8.
The sea surface temperature (SST) or sea level pressure (SLP) has usually been used to measure the strength of El Niño–Southern Oscillation (ENSO) events. In this study, two new indices, based on the upper-ocean heat content (HC), are proposed to quantify the two “flavours” of El Niño (i.e., the Cold Tongue El Niño (CTE) and Warm Pool El Niño (WPE)). Compared with traditional SST or SLP indices, the new HC-based indices can distinguish CTE and WPE events much better and also represent the two leading modes of the interannual variability of the atmosphere–ocean coupled system in the tropical Indo-Pacific region. The two leading modes are obtained by performing multivariate Empirical Orthogonal Function analysis on two oceanic variables (SST and HC) over the tropical Pacific (30°S–30°N, 120°E–80°W) and six atmospheric variables (outgoing longwave radiation, SLP, streamfunction, and velocity potential at 850?hPa and 200?hPa) over the tropical Indo-Pacific region (30°S–30°N, 60°E–80°W) for the period 1980–2010. Because the two new HC-based indices are capable of better depicting coherent variations between the ocean and atmosphere, they can provide a supplementary tool for ENSO monitoring of and climate research into the two flavours of El Niño.  相似文献   

9.
Summer Sahel-ENSO teleconnection and decadal time scale SST variations   总被引:5,自引:0,他引:5  
The correlation between Sahel rainfall and El Niño–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200?hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Niño-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.  相似文献   

10.
The spring asymmetric mode over the Tropical Indian Ocean (TIO) is characterized by contrasting patterns of rainfall and surface wind anomalies north and south of Equator. The asymmetric pattern in rainfall has evolved as a leading mode of variability in the TIO and is strongly correlated with El Niño-Southern Oscillation (ENSO) and positive Indian Ocean Dipole (IOD). The evolution of the asymmetric pattern in rainfall and surface wind during pure El Niño/IOD and co-occurrence years are examined in the twentieth century reanalysis for the period of 1871–2008 and atmospheric general circulation model (AGCM) simulations. The study revealed that spring asymmetric mode is well developed when El Niño co-occurred with IOD (positive) and is driven by the associated meridional gradients in sea surface temperature (SST) and sea level pressure (SLP). The pure El Niño composites are characterized by homogeneous (spatially) SST anomalies (positive) and weaker SLP gradients and convection, leading to weak asymmetric mode. The asymmetric mode is absent in the pure IOD (positive) composites due to the persistence of east west SST gradient for a longer duration than the co-occurrence years. The meridional gradient in SST anomalies over the TIO associated with the ENSO-IOD forcing is therefore crucial in developing/strengthening the spring asymmetric mode. The northwest Pacific anticyclonic circulation further strengthen the asymmetric mode in surface winds by inducing northeasterlies in the north Indian Ocean during pure El Niño and co-occurrence years. The simulations based on AGCM, forced by observed SSTs during the period of 1871–2000 supported the findings. The analysis of available station and ship track data further strengthens our results.  相似文献   

11.
Based on a novel design of coupled model simulations where sea surface temperature (SST) variability in the equatorial tropical Pacific was constrained to follow the observed El Niño—Southern Oscillation (ENSO) variability, while rest of the global oceans were free to evolve, the ENSO response in SSTs over the other ocean basins was analyzed. Conceptually the experimental setup was similar to discerning the contribution of ENSO variability to interannual variations in atmospheric anomalies. A unique feature of the analysis was that it was not constrained by a priori assumptions on the nature of the teleconnected response in SSTs. The analysis demonstrated that the time lag between ENSO SST and SSTs in other ocean basins was about 6 months. A signal-to-noise analysis indicated that between 25 and 50 % of monthly mean SST variance over certain ocean basins can be attributed to SST variability over the equatorial tropical Pacific. The experimental setup provides a basis for (a) attribution of SST variability in global oceans to ENSO variability, (b) a method for separating the ENSO influence in SST variations, and (c) understanding the contribution from other external factors responsible for variations in SSTs, for example, changes in atmospheric composition, volcanic aerosols, etc.  相似文献   

12.
In this study the observed non-linearity in the spatial pattern and time evolution of El Niño Southern Oscillation (ENSO) events is analyzed. It is shown that ENSO skewness is not only a characteristic of the amplitude of events (El Niños being stronger than La Niñas) but also of the spatial pattern and time evolution. It is demonstrated that these non-linearities can be related to the non-linear response of the zonal winds to sea surface temperature (SST) anomalies. It is shown in observations as well as in coupled model simulations that significant differences in the spatial pattern between positive (El Niño) versus negative (La Niña) and strong versus weak events exist, which is mostly describing the difference between central and east Pacific events. Central Pacific events tend to be weak El Niño or strong La Niña events. In turn east Pacific events tend to be strong El Niño or weak La Niña events. A rotation of the two leading empirical orthogonal function modes illustrates that for both El Niño and La Niña extreme events are more likely than expected from a normal distribution. The Bjerknes feedbacks and time evolution of strong ENSO events in observations as well as in coupled model simulations also show strong asymmetries, with strong El Niños being forced more strongly by zonal wind than by thermocline depth anomalies and are followed by La Niña events. In turn strong La Niña events are preceded by El Niño events and are more strongly forced by thermocline depth anomalies than by wind anomalies. Further, the zonal wind response to sea surface temperature anomalies during strong El Niño events is stronger and shifted to the east relative to strong La Niña events, supporting the eastward shifted El Niño pattern and the asymmetric time evolution. Based on the simplified hybrid coupled RECHOZ model of ENSO it can be shown that the non-linear zonal wind response to SST anomalies causes the asymmetric forcings of ENSO events. This also implies that strong El Niños are mostly wind driven and less predictable and strong La Niñas are mostly thermocline depth driven and better predictable, which is demonstrated by a set of 100 perfect model forecast ensembles.  相似文献   

13.
A noise reduction technique, namely the interactive ensemble (IE) approach is adopted to reduce noise at the air–sea interface due to internal atmospheric dynamics in a state-of-the-art coupled general circulation model (CGCM). The IE technique uses multiple realization of atmospheric general circulation models coupled to a single ocean general circulation model. The ensembles mean fluxes from the atmospheric simulations are communicated to the ocean component. Each atmospheric simulation receives the same SST coming from the ocean component. The only difference among the atmospheric simulations comes from perturbed initial conditions, thus the atmospheric states are, in principle synoptically independent. The IE technique can be used to better understand the importance of weather noise forcing of natural variability such as El Niño Southern Oscillation (ENSO). To study the impact of weather noise and resolution in the context of a CGCM, two IE experiments are performed at different resolutions. Atmospheric resolution is an important issue since the noise statistics will depend on the spatial scales resolved. A simple formulation to extract atmospheric internal variability is presented. The results are compared to their respective control cases where internal atmospheric variability is left unchanged. The noise reduction has a major impact on the coupled simulation and the magnitude of this effect strongly depends on the horizontal resolution of the atmospheric component model. Specifically, applying the noise reduction technique reduces the overall climate variability more effectively at higher resolution. This suggests that “weather noise” is more important in sustaining climate variability as resolution increases. ENSO statistics, dynamics, and phase asymmetry are all modified by the noise reduction, in particular ENSO becomes more regular with less phase asymmetry when noise is reduced. All these effects are more marked for the higher resolution case. In contrast, ENSO frequency is unchanged by the reduction in the weather noise, but its phase-locking to the annual cycle is strongly dependent on noise and resolution. At low resolution the noise structure is similar to the signal, whereas the spatial structure of the noise deviates from the spatial structure of the signal as resolution increases. It is also suggested that event-to-event differences are largely driven by atmospheric noise as opposed to chaotic dynamics within the context of the large-scale coupled system, suggesting that there is a well-defined “canonical” event.  相似文献   

14.
The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.  相似文献   

15.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

16.
The January–March (JFM) climate response of the Northern Hemisphere atmosphere to observed sea surface temperature (SST) anomalies for the period 1855–2002 is analysed from a 35-member ensemble made with SPEEDY, an atmospheric general circulation model (AGCM) of intermediate complexity. The model was run at the T30-L8 resolution, and initial conditions and the early stage of model runs differ among ensemble members in the definition of tropical diabatic heating. SST anomalies in the Niño3.4 region were categorised into five classes extending from strong cold to strong warm. Composites based on such a categorisation enabled an analysis of the influence of the tropical Pacific SST on the Northern Hemisphere atmospheric circulation with an emphasis on the Pacific-North America (PNA) and the North Atlantic-Europe (NAE) regions. As expected, the strongest signal was detected over the PNA region. An “asymmetry” in the model response was found for the opposite polarity of the Niño3.4 index; however, this asymmetry stems mainly from the difference in the amplitude of model response rather than from the phase shift between responses to warm and cold El Niño-Southern Oscillation (ENSO) events. The extratropical signal associated with warm ENSO events was found to be stronger than that related to cold events. The results also reveal that, for the PNA region, the amplitude of the response is positively correlated with the strength of ENSO, irrespective of the sign of ENSO. With almost no phase shift between model responses to El Niño and La Niña, the linear component of the response is much stronger than the non-linear component. Although the model climate response over the NAE region is much weaker than that over the PNA region, some striking similarities with the PNA are found. Both sea level pressure and precipitation responses are positively correlated with the strength of ENSO. This is not true for the 200-hPa geopotential heights, and no plausible explanation for such a result could be offered. An appreciable linear component in model response over the NAE was also found. The model results over the NAE region agree reasonably well with observational studies. An additional analysis of the remote atmospheric response to very weak ENSO forcing (defined from the interval between 0.5σ and 1.0σ of the interannual variance) was also carried out. A discernible model response in the Northern Hemisphere to such a weak SST forcing was found.  相似文献   

17.
While time-slice simulations with atmospheric general circulation models (GCMs) have been used for many years to regionalize climate projections and/or assess their uncertainties, there is still no consensus about the method used to prescribe sea surface temperature (SST) in such experiments. In the present study, the response of the Indian summer monsoon to increasing amounts of greenhouse gases and sulfate aerosols is compared between a reference climate scenario and three sets of time-slice experiments, consisting of parallel integrations for present-day and future climates. Different monthly mean SST boundary conditions have been tested in the present-day integrations: raw climatological SST derived from the reference scenario, observed climatological SST, and observed SST with interannual variability. For future climate, the SST forcing has been obtained by superimposing climatological monthly mean SST anomalies derived from the reference scenario onto the present-day SST boundary conditions. None of these sets of time-slice experiments is able to capture accurately the response of the Indian summer monsoon simulated in the transient scenario. This finding suggests that the ocean–atmosphere coupling is a fundamental feature of the climate system. Neglecting the SST feedback and variability at the intraseasonal to interannual time scales has a significant impact on the projected monsoon response to global warming. Adding interannual variability in the prescribed SST boundary conditions does not mitigate the problem, but can on the contrary reinforce the discrepancies between the forced and coupled experiments. The monsoon response is also shown to depend on the simulated control climate, and can therefore be sensitive to the use of observed rather than model-derived SSTs to drive the present-day atmospheric simulation, as well as to any approximation in the prescribed radiative forcing. While such results do not challenge the use of time-slice experiments for assessing uncertainties and understanding mechanisms in transient scenarios, they emphasize the need for high-resolution coupled atmosphere-ocean GCMs for dynamical downscaling, or at least for high-resolution atmospheric GCMs coupled with a slab or a regional ocean model.  相似文献   

18.
The atmospheric low frequency variability at a regional or global scale is represented by teleconnection. Using monthly dataset of the Climatic Research Unit (CRU) for the period 1971–2016, the impacts of four large-scale teleconnection patterns on the climate variability over Southwest Asia are investigated. The large-scale features include the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the East Atlantic (EA) teleconnection patterns, as well as western tropical Indian Ocean (WTIO) sea surface temperature anomaly index. Results indicate that ENSO and EA are the first leading modes that explain variation of Southwest Asian precipitation, with positive (negative) anomalies during El Niño (La Niña) and the negative (positive) phase of EA. Variation of Southwest Asian near-surface temperature is most strongly related to WTIO index, with above-average (below-average) temperature during the positive (negative) phase of WTIO index, although the negative (positive) phase of NAO also favours the above-average (below-average) temperature. On the other hand, temperature (precipitation) over Southwest Asia shows the least response to ENSO (WTIO). ENSO and EA individually explain 13 percent annual variance of precipitation, while WTIO index explains 36 percent annual variance of near-surface temperature over Southwest Asia. Analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim) data indicated establishments of negative (positive) geopotential height anomalies in the middle troposphere over Southwest Asia during El Niño (La Niña) or the negative (positive) phase of NAO, EA and WTIO. The response of precipitation variability over Southwest Asia to NAO is opposite to that expected from the geopotential height anomalies, but the correlation between precipitation and NAO is not statistically significant. Due to predictability of large-scale teleconnections, results of this study are encouraging for improvement of the state-of-the-art seasonal prediction of the climate over Southwest Asia.  相似文献   

19.
江洁  周天军  吴波  邹立维 《大气科学》2019,43(3):467-482
观测发现,西北太平洋区域夏季降水—SST存在显著的负相关,主要是由于El Ni?o衰减年西北太平洋异常反气旋持续至夏季,该过程是检验耦合模式性能的重要参照标准。本文利用中国科学院大气物理研究所近期气候预测系统IAP-DecPreS,通过海洋同化试验、大气模式AMIP试验与观测结果的比较,评估海洋同化试验对西北太平洋夏季局地海气相互作用特征的模拟影响。结果表明,海洋同化试验能够模拟出西北太平洋区域夏季降水—SST负相关,但负相关区域范围偏小。其与观测之间的最大差异出现在8月,西北太平洋负降水异常及异常反气旋位置偏东,强度偏弱。这是由于其模拟的El Ni?o衰减年夏季赤道东印度洋正降水异常偏弱且移动至赤道南侧,对流层增温偏弱,对西太平洋的遥相关作用偏弱。AMIP试验未考虑大气对海洋的反馈作用,不能再现西北太平洋降水—SST负相关,无法模拟出El Ni?o衰减年夏季西北太平洋异常反气旋。研究表明,海洋同化试验对西北太平洋区域局地海气相互作用特征的模拟能力较AMIP试验有所提升,其对8月西北太平洋降水与环流场的模拟偏差与东赤道印度洋降水模拟偏差有关。  相似文献   

20.
A recently identified climate mode called Ningaloo Niño (Niña) is associated with positive (negative) sea surface temperature (SST) anomalies off the west coast of Australia and negative (positive) sea level pressure (SLP) anomalies in the overlying atmosphere. By conducting a series of numerical experiments with an atmospheric general circulation model, generation mechanisms of the atmospheric circulation anomalies accompanied by Ningaloo Niño/Niña are examined. Even when SST is allowed to vary interannually only in the eastern South Indian Ocean, negative (positive) SLP anomalies are formed off the west coast of Australia in Ningaloo Niño (Niña) years, supporting the existence of local ocean–atmosphere interaction. When the model is forced by SST anomalies outside of the eastern South Indian Ocean, negative (positive) SLP anomalies are also generated in Ningaloo Niño (Niña) years owing to a Matsuno–Gill type response to atmospheric convection anomalies in the tropical Pacific. It is found that the latter impact is stronger in the current atmospheric general circulation model. Regarding climatic impacts, it is shown that Ningaloo Niño (Niña) induces wet (dry) anomalies over the northwestern part of Australia even when SST anomalies outside of the eastern South Indian Ocean are excluded from the SST forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号