首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
利用静止气象卫星监测沙尘暴   总被引:12,自引:3,他引:9  
MODTRAN的理论模拟和实际卫星图象分析结果表明:分裂窗亮温差与11μm红外亮温的比值可以很好地反映弱沙尘的存在.当强沙尘出现时,借助于可见光、红外和水汽图象的光谱分类技术是监测沙尘暴的有效手段.作者首先介绍分裂窗处理技术和光谱分类技术,而后展示了国家卫星气象中心静止气象卫星沙尘暴自动监测精度的初步检验结果.  相似文献   

2.
为了综合应用静止气象卫星与极轨气象卫星沙尘监测的结果,更好地进行沙尘信息的判识,采用改进的证据理论方法,进行静止卫星FY-2D/2E红外差值沙尘指数(infrared difference dust index,IDDI)产品与极轨气象卫星FY-3A沙尘强度指数(dust strength index,DSI)沙尘监测产品的融合处理,划分沙尘发生过程中的有沙尘暴发生区、无沙尘暴发生区及可能沙尘暴发生区。融合结果与气象站点观测结果的对比分析表明,本算法可以将静止气象卫星与极轨气象卫星遥感沙尘监测结果进行较好地融合,更好地划分沙尘暴发生的区域,对于沙尘暴过程的监测、评估和分析有重要的参考价值和指导意义。  相似文献   

3.
FY 4A上搭载的多通道扫描成像辐射计(AGRI)无论是时间分辨率还是空间分辨率与我国第一代静止气象卫星风云二号上搭载的扫描辐射计(VISSR)相比都有了明显的改进。本文基于FY 4A AGRI成像仪IDDI(红外差值沙尘指数)和新的昼夜沙尘遥感改进算法开展2021年中国北方沙尘过程连续遥感监测处理,并系统分析了2021年3个典型个例的沙尘暴特征和影响区域。结果表明:① 3次典型沙尘过程对我国北方各省份的影响面积总计最低达到260万km2以上,最高达到300万km2以上,4月14—17日的沙尘暴影响面积最大。②2021年沙尘高发区在新疆南部、甘肃河西走廊以北以及内蒙古西部。与2019、2020年同期相比,2021年我国北方沙尘发生频次更高、影响范围更大。③新一代FY 4A静止卫星对我国沙尘过程年际变化具备更加完整的监测能力。  相似文献   

4.
美国国家航空航天局(NASA)的MODIS业务云检测产品MOD35是其他大气产品和陆地产品反演的辅助数据,也是目前很多云检测研究的检验依据。为研究MODIS云检测业务产品MOD35的监测效果,分析了中国北方地区有沙尘暴天气的MOD35产品,发现产品易将沙尘气溶胶区域误判为云。为了区分沙尘和云,对中国北方地区白天4次沙尘过程数据进行散点图分析,并通过计算损失率得到沙尘气溶胶的11μm、12μm通道亮温差特征和11μm通道、3.7μm通道的亮温范围,改进了MODIS监测沙尘气溶胶的算法。应用此算法对MODIS云检测产品中的沙尘气溶胶污染进行判别,分析结果与国家气象卫星中心发布的沙尘监测一致。改进的算法能有效地监测出MOD35产品中误判为云的沙尘区域,结合MOD35自身的厚气溶胶标记,改进了云检测产品的效果。  相似文献   

5.
沙尘气溶胶卫星遥感现状与需要关注的若干问题   总被引:5,自引:2,他引:3  
张鹏  王春姣  陈林  白文广  漆成莉  齐瑾 《气象》2018,44(6):725-736
沙尘暴是全球干旱、半干旱地区特有的一种灾害性天气,所产生的沙尘气溶胶是全球气溶胶系统重要组成部分,对全球环境、天气、气候和生态有复杂的影响。沙尘气溶胶作为一种吸收性气溶胶,对太阳辐射有着较强的吸收,还能通过加热大气、改变大气稳定度、蒸发云滴、减少云量等"半直接方式"影响气候。卫星遥感对沙尘气溶胶的监测具有独特的优势,是全球沙尘研究的重要手段。本文系统整理和介绍了目前常用的可见近红外、热红外、被动微波、紫外和主动激光测量等五类卫星遥感沙尘气溶胶的主要方法,在总结典型遥感仪器和主要产品基础上,讨论了遥感产品的定量精度和地面验证问题,结合辐射传输理论模拟了可见近红外和热红外的卫星观测,探讨了可见近红外遥感的地表反照率影响和热红外高光谱遥感的波段选择问题,最后对未来的一些研究重点进行了展望。  相似文献   

6.
沙尘暴是一种强自然灾害,日益成为影响生态环境和社会经济的重要问题.随着遥感技术的不断发展和新型遥感数据的大量出现,运用遥感技术监测沙尘灾害不仅弥补了传统监测手段时空分辨率的不足,同时也是沙尘灾害研究的重要组成部分.本文论述了卫星遥感监测沙尘灾害的原理,从沙尘移动路径变化、下垫面状况、遥感信息定量获取和强度监测等四个方面总结了遥感监测沙尘灾害的主要内容,并介绍了利用极轨卫星和静止卫星遥感监测沙尘的主要方法,最后从新型遥感数据应用、多种遥感方式结合和多学科、多领域的交叉研究等三个方面展望了卫星遥感监测沙尘的未来的发展趋势.  相似文献   

7.
张盼想  张鹏  陈林  王维和  车慧正 《气象科技》2018,46(6):1258-1265
粒子尺度谱和复折射率指数是描述大气气溶胶的基本物理参数,也是遥感大气气溶胶光学厚度的基本假定量,决定了光学厚度遥感的准确程度。本文分析了中国气溶胶遥感网反演的北京周边的沙尘和霾天气下大气气溶胶的体积谱和复折射指数,结果表明:沙尘和霾天气下气溶胶的体积谱均呈现双峰对数正态分布,霾气溶胶粒子体积谱在细模态(0.1~1μm)和粗模态(1~10μm)的占比大体相当,沙尘气溶胶粒子体积谱中粗模态占比远远高于细模态,以粗粒子为主;将实际测量的复折射率同HITRAN 2008数据库中各种类型的气溶胶复折射率光谱数据相比,类沙尘粒子的复折射指数同沙尘气溶胶最为接近,水溶性粒子同霾气溶胶最为接近,在大气气溶胶遥感中如果缺少复折射率的光谱数据,可考虑将类沙尘粒子和水溶性粒子的复折射率光谱数据(0.2~40μm)外推近似代替沙尘和霾气溶胶用于紫外和红外遥感。本研究可为利用紫外光谱和红外光谱定量遥感沙尘和霾气溶胶研究提供参考和依据。  相似文献   

8.
利用MODIS资料定量判识沙尘暴方法研究   总被引:1,自引:2,他引:1  
郭铌  梁芸 《干旱气象》2006,24(1):1-6
为了利用MOD IS资料对沙尘暴的范围和强度进行定量判识,应用多时次MOD IS多波段资料,在对沙尘暴、云、雪和沙漠光谱特征进行较为细致分析的基础上,寻找出能区分沙尘、云和地表的波段,构建了2个定量判别沙尘暴范围和强度的沙尘指数,并利用沙尘指数对2002~2005年多次MOD IS沙尘暴的范围和强度进行判识。研究结果表明:1)沙尘在反射光谱段的光谱特征为反射率随着波长的增加而增大,与土壤光谱特征相近;大粒径沙尘反射率增长速率大于小粒径沙尘。2)小粒径沙尘具有较典型的气溶胶特征,对0.46μm蓝光波段敏感,对1.6和2.1μm短红外波段不敏感。3)大粒径沙尘不具有气溶胶特性,对蓝光波段不敏感,对短波红外敏感。4)3.7μm和8.5μm是对沙尘敏感波段,2波段的差可以作为判别沙尘的指标,并在一定程度上反映沙尘强度。5)设计的2个沙尘指数对监测沙尘十分有效,且方法简单,适于业务应用。  相似文献   

9.
NOAA卫星沙尘暴光谱特征分析及信息提取研究   总被引:12,自引:5,他引:7  
郭铌  倾继祖 《高原气象》2004,23(5):643-647,i001,i002
通过对2000—2002年多次沙尘暴过程NOAA卫星AVHRR资料的分析,研究了沙尘、云、沙漠、戈壁、积雪、裸地、植被等不同目标物的光谱特性,发现沙尘暴在AVHRR-2中各通道均有不同程度的反映。1,2通道中沙尘的反射率较高(介于云和沙漠之间);4,5通道的亮温低于晴空地表高于云;在3通道中沙尘表现的很独特,其亮度温度为所有研究目标物中最高的,表明通道3包含较多的沙尘信息,AVHRR-3取代AVHRR-2后对监测沙尘有不利影响。在此基础上提出定量提取沙尘信息的两种沙尘判识指数,并利用沙尘判识指数成功地提取多次沙尘暴过程的沙尘信息。结果表明:利用多通道组合沙尘判识指数能够对沙尘信息进行有效提取。  相似文献   

10.
王威  胡秀清  张鹏  闵敏 《气象》2019,45(12):1666-1679
Himawari-8是日本发射的新一代静止气象卫星,与前一代的MTSAT-2相比,在时间、空间分辨率上都有了很大提升,特别是红外通道数量从4个增至10个,为红外遥感沙尘提供了新的观测数据。本研究利用Himawari-8的红外观测数据,发展了仅用红外通道的沙尘全天候判识算法,可以实现对白天和夜间的连续监测。算法在前人基础上去除了可见光通道,同时引入更多红外通道来进行云检测和沙尘判识。由于一日之中,地表温度发生变化,因此针对白天和夜间设置了两套不同的判别阈值,来保证算法的全天适用性。最后通过两次沙尘事件对沙尘判别结果的分析和检验表明,遥感判识结果与地面气象站和PM_(10)观测较为一致,说明了只用红外通道全天候判识沙尘的可行性。  相似文献   

11.
静止气象卫星的快速区域扫描是监测不同天气过程的有利手段。以获取的风云静止气象卫星快速区域扫描数据为基础,选取2011年台风梅花(1109)及2012年台风海葵(1211)的观测数据,采用Hovm(o|¨)ller分析图、变异系数等参数,研究不同时空分辨率观测数据对台风云系结构特征参数监测的敏感性影响。分析结果表明:可见光通道10 min观测时间间隔配以1.25 km空间分辨率可以很好地反映云系演变特征,在相同观测时间分辨率条件下,降低空间分辨率会对云系结构特征的提取有较大影响;在相同空间分辨率条件下,观测时间分辨率的降低对云系结构及演变特征的分析影响较小;基于变异系数的分析说明云像元特性在60 min的观测时间间隔下发生了较大变化,如果以60 min为观测时间间隔将会失去较多的云像元变化特征。水汽通道不同观测时间的变异系数差值小于红外通道1,说明云像元在红外通道1的特性演变对观测时间的敏感性高于水汽通道,提高观测频率可获取更多的云像元红外通道1的辐射特性。  相似文献   

12.
In this paper,the latest progress,major achievements and future plans of Chinese meteorological satellites and the core data processing techniques are discussed.First,the latest three FengYun(FY)meteorological satellites(FY-2H,FY-3D,and FY-4A)and their primary objectives are introduced Second,the core image navigation techniques and accuracies of the FY meteorological satellites are elaborated,including the latest geostationary(FY-2/4)and polar-orbit(FY-3)satellites.Third,the radiometric calibration techniques and accuracies of reflective solar bands,thermal infrared bands,and passive microwave bands for FY meteorological satellites are discussed.It also illustrates the latest progress of real-time calibration with the onboard calibration system and validation with different methods,including the vicarious China radiance calibration site calibration,pseudo invariant calibration site calibration,deep convective clouds calibration,and lunar calibration.Fourth,recent progress of meteorological satellite data assimilation applications and quantitative science produce are summarized at length.The main progress is in meteorological satellite data assimilation by using microwave and hyper-spectral infrared sensors in global and regional numerical weather prediction models.Lastly,the latest progress in radiative transfer,absorption and scattering calculations for satellite remote sensing is summarized,and some important research using a new radiative transfer model are illustrated.  相似文献   

13.
新疆是我国沙尘天气多发区,但是地面测站稀少,使用卫星遥感监测沙尘天气有非常大的优势。利用国家卫星气象中心开发并向各省推广的SMART业务系统,以FY-3B/VIRR为数据源,采用以人机交互方式分析区域沙尘遥感监测方法。以2012年数据为例,对沙尘天气进行了遥感监测,结果表明FY-3B/VIRR数据可有效提取沙尘天气信息,具有较好的沙尘监测评估业务应用前景。  相似文献   

14.
利用FY-2C卫星数据反演云辐射特性   总被引:2,自引:0,他引:2       下载免费PDF全文
周青  赵凤生  高文华 《大气科学》2010,34(4):827-842
本文利用FY-2C静止卫星提供的可见光、中红外和热红外观测数据, 开展了水云光学厚度、粒子有效半径和云顶温度的云参数遥感探测理论和反演方法研究。基于FY-2C可见光、中红外(3.75 μm)与热红外(11 μm)通道辐射率对云光学厚度、 云滴有效半径、云顶温度辐射参数的敏感性分析, 提出三通道同时反演云的光学厚度、云滴有效半径及云顶温度的迭代方案; 通过个例分析进行了云参数反演试验, 并将结果与MODIS的云反演产品进行了对比, 最后对反演误差进行了分析。主要结论如下:(1) 个例反演得到的云参数与各通道探测数据有着较好的对应关系, 迭代计算标准偏差在允许的计算精度范围内(<0.89%), 反演结果具有合理性; (2) 通过与MODIS云反演产品的对比可以看到, 两者云光学厚度、云滴有效半径的均值和直方图分布都非常一致, 而MODIS的云顶温度比FY-2C反演值要高, 考虑到FY-2C的 11 μm通道测量的辐射值与MODIS相比偏小, 因此认为我们的反演方法与MODIS方法的精度是相当的。  相似文献   

15.
提升灾害性对流天气的监测预警能力是短临天气预报的首要目标,但对流性降水在时间、空间上分布高度不均,观测难度大。卫星遥感监测降水的传统红外、水汽亮温判识方法,报警云团数量多,空报率高,指示意义不稳定,需要结合背景因素寻找方法提炼卫星辐射观测中更多的内在隐含信息,建立云顶亮温与此类灾害天气间的联系。此文尝试使用FY-2气象卫星红外云图数据和逐时加密地面降水观测资料,通过追踪云团移动进而分类、提取参数,然后用模糊支持向量机(FSVM)方法建立地面观测雨强与云团特征动态演变间的机器学习数学关系,标识出有监测预警意义的云团和强降水中心,对检验地域和时间的卫星强降水云团检测识别率达80%左右。  相似文献   

16.
钱云 《应用气象学报》2008,19(5):635-640
风云二号静止气象卫星在获取图像时, 必须使扫描辐射计的观域对准地球。卫星在轨道上受到各种摄动力的作用, 使轨道和姿态改变, 扫描辐射计的地球观域随之发生变化。卫星扫描辐射计对地球观域的偏差会影响图像定位的精度, 因此对准观域的工作是日常业务工作的一部分, 不仅在卫星定点之初启动观测时, 而且在业务运行的过程中, 都需要通过地面遥控指令进行修正。该文提出了一种风云二号静止气象卫星扫描辐射计地球观域修正量和调整方向的算法, 以替代人工目测卫星原始云图进行的卫星观域调整控制决策。这种算法的实施可以提高风云二号气象卫星云图获取作业的可靠性。  相似文献   

17.
The first Korean geostationary satellite, the Communication, Ocean, Meteorological Satellite (COMS) carries the Meteorological Imager (MI) that measures solar radiance at 0.675 μm and infrared (IR) brightness temperatures at four spectral bands centered at 3.8, 6.7, 10.8, and 12.0 μm. This study reports the calibration status of the COMS MI solar and four IR channels, based mainly on a comparison with Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. The results obtained from four months of COMS MI solar channel measurements demonstrate that the solar channel has a dark bias of about 9–10%. On the other hand, the four IR channels appear to be well-calibrated as evidenced by a high correlation and near-unity slope between COMS and MODIS data. Nevertheless, existing biases of tenths of a kelvin are still considered to be substantial. Overall, the interpretation of COMS-derived meteorological products should take into account some uncertainty caused by possible calibration errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号