首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

2.
Horizontal diffusion in the surface layer is dependent on the standard deviation of wind direction fluctuations . Diurnal variation of this parameter in complex terrain was studied for the July 1979 Geysers, Cal., experiment using data from a network of 11 short meteorological towers in the 25 km2 Anderson Creek watershed Valley side slopes are roughly 20 ° and maximum terrain difference is about 1 km.Values of for wind directions sampled for one hour at a height of 10 m are about 35 ° during the daytime. They slowly decrease to about 20 ° by 8 to 10 p.m. as stability increases but wind speeds are still relatively high. After 10 p.m. the drainage flow sets in at most stations, with speeds of 1 to 2 m s-1, and average increases to about 30° during the period 11 p.m. to 6 a.m. In general, highest values of at night are associated with lowest values of wind speed and greatest static stability. This enhancement of by the terrain suggests that horizontal diffusion at night always conforms to that expected during nearly neutral stabilities. That is, Pasquill class D diffusion applies to the horizontal component all night in complex terrain.  相似文献   

3.
In this paper we analyse diabatic wind profiles observed at the 213 m meteorological tower at Cabauw, the Netherlands. It is shown that the wind speed profiles agree with the well-known similarity functions of the atmospheric surface layer, when we substitute an effective roughness length. For very unstable conditions, the agreement is good up to at least 200 m or z/L–7(z is height, L is Obukhov length scale). For stable conditions, the agreement is good up to z/L1. For stronger stability, a semi-empirical extension is given of the log-linear profile, which gives acceptable estimates up to ~ 100 m. A scheme is used for the derivation of the Obukhov length scale from single wind speed, total cloud cover and air temperature. With the latter scheme and the similarity functions, wind speed profiles can be estimated from near-surface weather data only. The results for wind speed depend on height and stability. Up to 80 m, the rms difference with observations is on average 1.1 m s–1. At 200 m, 0.8 m s–1 for very unstable conditions increasing to 2.1 m s–1 for very stable conditions. The proposed methods simulate the diurnal variation of the 80 m wind speed very well. Also the simulated frequency distribution of the 80 m wind speed agrees well with the observed one. It is concluded that the proposed methods are applicable up to at least 100 m in generally level terrain.  相似文献   

4.
Analytical solutions for the Ekman layer   总被引:1,自引:0,他引:1  
The PBL equation that governs the transition from the constant-stress surface layer to the geostrophic wind in a neutrally stratified atmosphere for which the eddy viscosityK(z) is assumed to vary smoothly from the surface-layer value U *z (0.4,U *=friction velocity,z=elevation) to the geostrophic asymptoteK GU *d forzd is solved through an expansion in fd/U *1 (f=Coriolis parameter). The resulting solution is separated into Ekman's constant-K solution an inner component that reduces to the classical logarithmic form forzd and isO() relative to the Ekman component forzd. The approximationKU *d is supported by the solution of Nee and Kovasznay's phenomenological transport equation forK(z), which yieldsKU *d exp(–z/d), where is an empirical constant for which observation implies, 1. The parametersA andB in Kazanskii and Monin's similarity relation forG/U * (G=geostrophic velocity) are determined as functions of . The predicted values ofG/U * and the turning angle are in agreement with the observed values for the Leipzig wind profile. The predicted value ofB based on the assumption of asymptotically constantK is 4.5, while that based on the Nee-Kovasznay model is 5.1; these compare with the observed value of 4.7 for the Leipzig profile. A thermal wind correction, an asymptotic solution for arbitraryK(z) and 1, and an exact (unrestricted ) solution forK(z)=U *d[1–exp(–z/d)] are developed in appendices.  相似文献   

5.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

6.
A numerical case study with a second-order turbulence closure model is proposed to study the role of urban canopy layer (UCL) for the formation of the nocturnal urban boundary layer (UBL). The turbulent diffusion coefficient was determined from an algebraic stress model. The concept of urban building surface area density is proposed to represent the UCL. Calculated results were also compared with field observation data. The height of the elevated inversion above an urban center was simulated and found to be approximately twice the average building height. The turbulent kinetic energy k, energy dissipation rate , and turbulence intensities u 2 and w 2 increase rapidly at the upwind edge of the urban area. The Reynolds stress uw displayed a nearly uniform profile inside the UBL, and the vertical sensible heat flux w had a negative value at the inversion base height. This indicates that the downward transport of sensible heat from the inversion base may play an important role in the formation of the nocturnal UBL.  相似文献   

7.
We formulate a method for determining the smallest time interval Tover which a turbulence time series can be averaged to decompose it intoinstantaneous mean and random components. From the random part the method defines the optimal interval (or averaging window) AW over which this part should be averaged to obtain the instantaneous spectrum. Both T and AW vary randomly with time and depend on physical properties of the turbulence. T also depends on the accuracy of the measurements and is thus independent of AW. Interesting features of the method are its real-time capability and the non-equality between AW and T.  相似文献   

8.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

9.
A Comparative Analysis of Transpiration and Bare Soil Evaporation   总被引:4,自引:0,他引:4  
Transpiration Ev and bare soil evaporation Eb processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content . For a homogeneous areal distribution of we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of are simulated by Monte-Carlo runs assuming normal distributions of .The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theEv()-Eb() differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation Av() and bare soil Ab() surfaces differ much less than the Ev() and Eb() curves. The results suggest that Ev is much more non-linearly related to environmental conditions than Eb. Both Ev and Eb depend on the distribution of , the wetness regime and the parameterization used. With the parameterizations, Eb showed greater variations than Ev. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.  相似文献   

10.
A vapour of radio-lead (212Pb) has been used to measure the Sherwood number, Sh, of model leaves at various angles of incidence,, to the airstream in a wind tunnel. The results for=0 are compared with Pohlhausen's formula and the results for 0, with Powell's experiments. The local values of Sh on the upwind and downwind sides of discs have been obtained. For leaves in the canopy, Sh was found to be about 25% greater than would be predicted by applying Pohlhausen's equation without correction for orientation.  相似文献   

11.
A previously published technique for using tethered spherical balloons as anemometers for measuring light low-level winds has been further developed. Earlier data on the relationship between the aerodynamic drag coefficient and the Reynolds number of spherical rubber balloons were combined with a large number of new data and re-analysed; and the errors in the relationship were estimated. The results allowed a more accurate calculation of wind speed from the deflection of a tethered balloon from the vertical. When combined with a new technique for calculating the effects of the tether, this enabled light to moderate low-level winds at fixed heights up to 600 m or more to be measured with simple, cheap, and readily mobile equipment; and a slight modification of the technique allowed measurement of winds in and above fog. Wind speeds measured by the ballon technique showed reasonably good agreement with measurements by an anemometer carried beneath the balloon.Glossary of Symbols a, b, c Coefficients in the relationship between lnC d and lnR - A Quantity under square root in solution for lnV whena0 - C d Wind drag coefficient for balloon - C dc Value ofC d given by calibration curve of Table I - D Dynamic wind pressure force on balloon - F Buoyant free lift of balloon with load - Re Reynold's number of balloon (sphere) - R = Re/105 - r Radius of sphere - T Tension in tether - V Wind speed - 83() =(lnC dc -lnC d ) when 83° , or 0 for other - Error in lnC d - Elevation of tether where attached to balloon - Elevation of balloon from ground tether point - Molecular viscosity of air - Ratio of circumference to diameter of circle - Density of air  相似文献   

12.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

13.
We have devised a partial differential equation for the prediction of dust concentration in a thin layer near the ground. In this equation, erosion (detachment), transport, deposition and source are parameterised in terms of known quantities. The interaction between a wind prediction model in the boundary layer and this equation affects the evolution of the dust concentration at the top of the surface layer. Numerical integrations are carried out for various values of source strength, ambient wind and particle size. Comparison with available data shows that the results appear very reasonable and that the model should be subjected to further development and testing.Notation (x, y, z, t) space co-ordinates and time (cm,t) - u, v components of horizontal wind speed (cm s–1) - u g, vg components of the geostrophic wind (cm s–1) - V=(u2+v2)1/2 (cm s–1) - (û v)= 1/(h – k) k h(u, v)dz(cm s–1) - V * friction velocity (cm s–1) - z 0 roughness length (cm) - k 1 von Karman constant =0.4 - V d deposition velocity (cm s–1) - V g gravitational settling velocity (cm s–1) - h height of inversion (cm) - k height of surface layer (cm) - potential temperature (°K) - gr potential temperature at ground (°K) - K potential temperature at top of surface layer (°K) - P pressure (mb) - P 0 sfc pressure (mb) - C p/Cv - (t)= /z lapse rate of potential temperature (°K cm–1) - A(z) variation of wind with height in transition layer - B(z) variation of wind with height in transition layer - Cd drag coefficient - C HO transfer coefficient for sensible heat - C dust concentration (g m–3) - C K dust concentration at top of surface layer (g m–3) - D(z) variation with height of dust concentration - u, v, w turbulent fluctuations of the three velocity components (cm s–1) - A 1 constant coefficient of proportionality for heat flux =0.2 - Ri Richardson number - g gravitational acceleration =980 cm s–2 - Re Reynolds number = - D s thickness of laminar sub-layer (cm) - v molecular kinematic viscosity of air - coefficient of proportionality in source term - dummy variable - t time step (sec) - n time index in numerical equations On sabbatical leave at University of Aberdeen, Department of Engineering, September 1989–February 1990.  相似文献   

14.
Effect of finite sampling on atmospheric spectra   总被引:2,自引:0,他引:2  
The effect of a finite averaging time on variances is well known, but its effect on power spectra is less clearly understood. We present numerical solutions for the spectral distortion arising from sampling over a finite time interval T and show that the commonly used filter function (1 – sinc2f T), valid for variances, is a reasonable approximation for power spectra only when T 10 m , where f is the cyclic frequency, and m is the dominant time scale of the process. Our results exhibit an increasingly steeper low-frequency roll-off as T decreases relative to m , indicating that the measured spectrum is subject to a greater suppression of the lower frequencies (f > 1/T) than predicted by (1 – sinc2f T). This suppression is, in a sense, compensated by an overestimation of spectral estimates in the frequency range f 1/T.  相似文献   

15.
Many applied dispersion models require the knowledge of boundary-layer parameters such as sensible heat flux,Q H , friction velocity,u *, and turbulent energy components, w and v . Formulas are suggested for calculating these parameters over a wide variety of types of ground surfaces, based on simple observations of wind speed near the ground and fractional cloud cover, and specification of constants such as roughness length, albedo, and soil moisture availability. Observations ofu *,Q H , w , and v during field experiments in St. Louis and Indianapolis are used to test the formulas for urban sites. Relative errors of about ±20% in the predictions are seen to occur whenu *,Q H , w , and v are large. However, when these quantities are small (e.g.,u * < 0.2 m/s), the errors in the predictions are as large as the mean value of the quantity itself.In addition, it is concluded from studies of available field data and theories that the magnitude of w is not well-known at elevations above about 100m during the late afternoon and night. Some simple parameterizations for w . are suggested that are consistent with the observed steady decrease in ground-level concentration in the afternoon and the sudden increase in concentration that can occur a few hours after sunset due to wind shears associated with a low-level jet, for continuous plumes emitted from moderate to tall stacks.  相似文献   

16.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

17.
We analyze the checkerboard problem of many alternating surfaces with different properties, on scales up to (say) 3,000 m. Power-law representations of the vertical profiles of mean wind speed and eddy diffusivity lead to solutions in terms of Kelvin and trigonometric functions.These solutions are used to determine blending heights (*), where deviations from the mean of concentration, or of vertical flux density, fall to some small fraction, , of their value at the surface. Values of *are important for regional and larger-scale meteorological models. In smaller scale micrometeorological studies, they may serve also as the top levels of surface boundary layers.An important result for both theoretical and experimental contexts is that deviations of flux persist with elevation much more strongly than those of concentration, so that, in general, * should be based on flux rather than concentration. Representative values of *, for = 0.05, are of order 5 and 30 m for surface pattern wavelengths of 102 and 103 m, respectively. Values of * are robust to changes in adopted power-law indices, and are independent of wind speed. Surface roughness has a mild but calculable effect.  相似文献   

18.
A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients (K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land.A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and g/, being the temperature difference between continental mixed-layer air and sea surface, is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014x 1/2 U (g/)–1/2.In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale 500 km. The circulation is related to the advection, and subsequent decay, of daytime convective turbulence over the sea.  相似文献   

19.
Summary A zonally averaged global energy balance model with feedback mechanisms was constructed to simulate (i) the poleward limits of ITCZ over the continent and over the ocean and (ii) a simple monsoon system as a result of differential heating between the continent and the ocean. Three numerical experiments were performed with lower boundary as (1) global continent, (2) global ocean and (3) continent-ocean, with freezing latitudes near the poles. Over the continent, midlatitude deserts were found and the ITCZ migrates 25° north and south with seasons. Over a global swamp ocean results do not show migration of ITCZ with time but once the ocean currents are introduced the ITCZ migrates 5° north and south with seasons. It was found that the seasonal migration of ITCZ strongly depends on the meridional distribution of the surface temperature. It was also found that continent influences the location of the oceanic ITCZ. In the tropics northward progression of quasi-periodic oscillations called events are found during the pre- and post-monsoon periods with a period of 8 to 15 days. This result is consistent with the observed quasi-periodic oscillations in the tropical region. Northward propagation of the surface temperature perturbation appears to cause changes in the sensible heat flux which in turn causes perturbations in vertical velocity and latent heat flux fields.List of Symbols vertical average - 0 zonal average - vertical mean of the zonal average - 0s zonal average at the surface - 0a zonal average at 500 mb level - latitude We now define the various symbols used in the model rate of atmospheric heating due to convective cloud formation (K/sec) - dp/dt (N/m2/sec) - density - potential temperature (K) - rate of rotation of the earth (rad/sec) - empirical constant - humidity mixing ratio - * saturated humidity mixing ratio - opacity of the atmosphere - 1,2 factors for downward and upward effective black body long wave radiation from the atmosphere - Stefan-Boltzmann constant - emissivity of the surface - D subsurface temperature (K) - a specific volume - 0xs ,0ys eastward and northward components of surface frictional stress - * vertical velocity at the top of the boundary layer (N/m2/sec) - P Thickness of the boundary layer (mb) - nondimensional function of pressure - P pressure - P a pressure of the model atmosphere (N/m2) - P s pressure at the surface (N/m2) - t time (sec) - U eastward wind speed (m/sec) - V northward wind speed (m/sec) - surface water availability - T absolute temperature (K) - heat addition due to water phase changes - g acceleration due to gravity (m2/sec) - a radius of the earth (m) - R gas constant for dry air (J/Kg/K) - C p specific heat of air at constant pressure (J/Kg/K) - k R/C p - L latent heat of condensation (J/Kg) - f coriolis parameter (rad/sec) - H s H 0s (1) +H 0s (2) +H 0s (3) +H 0s (4) +H 0s (5) (J/m2/Sec)=sum of the rates of vertical heat fluxes per unit surface area, directed toward the surface - H a H 0a (1) +H 0a (2) +H 0a (3) +H 0a (4) (J/m2/Sec)=sum of the rates of heat additions to the atmospheric column per unit horizontal area by all processes - H 0s (1) ,H 0a (1) heat flux due to short wave radiation - H 0s (2) ,H 0a (2) heat flux due to long wave radiation - H 0s (3) ,H 0a (3) heat flux due to small scale convection - H 0s (4) heat flux due to evaporation - H 0a (4) heat flux due to condensation - H 0s (5) heat flux due to subsurface conduction and convection - e * saturation vapor pressure - R solar constant (W/m2) - r a albedo of the atmosphere - r s albedo of the surface - b 2 empirical constant (J/m2/sec) - c 2 empirical constant (J/m2/sec) - e 2 nondimensional empirical constant - f 2 empirical constant (J/m2/sec) - factor proportional to the conductive capacity of the surface medium - a s constant used in Sellers model - b s positive constant of proportionality used in the Sellers model (kg m2/J/sec2) - K HT coefficient for eddy diffusivity of heat (m2/sec) - K HE exchange coefficient for water vapor (m2/sec) - h depth of the water column (m) - z height (m) - V 0ws meridional component of surface current (m/sec) - n cloud amount - G 0,n long wave radiation form the atmosphere for cloud amount n (W/m2) - B 0 long wave radiation from the surface (W/m2) - S 0,n short wave radiation from the atmosphere for cloud amount n (W/m2) - A n albedo factor for a cloud amount n - R f1 large scale rainfall (mm/day) - R f2 small scale rainfall (mm/day) With 22 Figures  相似文献   

20.
The variations of and in the drainage flow in the Brush Creek valley of western Colorado are investigated using data from Doppler acoustic sodars and instrumented towers. The data were obtained on two experimental nights during the 1984 ASCOT field study. There is good agreement between the variations derived from low-level observations of the sodars and those derived from the towers located throughout the valley. The observed hourly average and in the nocturnal drainage flow are about 20 ° to 25 ° and 5 °, respectively; these values are much larger than those generally observed over flat terrain during nighttime stable conditions. After sunrise (about 0600 MST), as the valley warms and the flow direction changes to up-valley, these parameters increase sharply to their peak values at about 0800 MST and then decrease to their normal daytime values after about two hours.In the drainage flow, the hourly average varies inversely with wind speed according to the relation u 0.7ms-1. The vertical standard deviation is much less enhanced by complex terrain than the horizontal standard deviation. The observed values are predicted fairly well by the local similarity theory.Oak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 andOak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号