首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
《浙江气象》2014,(2):45-45
正森林向大气中排放大量挥发性有机物。森林排放的挥发性有机物的可凝结氧化产物能形成二次有机气溶胶,后者能通过散射太阳辐射和充当云凝结核来影响地球的辐射平衡。但我们对源于生物的挥发性有机物与它们向气溶胶颗粒的转化之间联系的认识仍然有限。  相似文献   

2.
生物源与人为源有机气体氧化形成的二次有机气溶胶(SOA)对气候变化和人类健康具有重要影响。SOA的产生与其前体物研究已取得了一些进展,但由于有机气体之间存在复合相互作用以及SOA形成机制复杂,目前对不同有机气体混合体系中SOA的形成认知还比较匮乏。因此,深入了解有机气体多源、复杂的相互作用,摸清有机气体的大气氧化机制、SOA的形成及影响等对深入理解真实大气有机气体化学演变具有指导意义。本文旨在了解复合体系有机气体氧化生成SOA的相关研究进展。一方面总结了复合体系有机气体产生SOA质量浓度、产率、成分、挥发性、光学性质等的变化,侧重于实验室复合体系有机气体氧化对SOA形成的多重影响以及SOA组成元素、分子构成的变化特征,并总结了目前实验室基于模型对复合体系SOA生成的模拟研究和拟合情况;另一方面探究了环境因素,如相对湿度(RH)、温度(T)以及无机气体,如氮氧化物(NOx)、二氧化硫(SO2)、氨气(NH3)等对复合体系有机气体形成SOA的影响。  相似文献   

3.
近年来大气气溶胶模式研究综述   总被引:7,自引:1,他引:7       下载免费PDF全文
该文对当前大气气溶胶模式的发展和应用作了简单的回顾和评述, 介绍了较流行的几个气溶胶热力学平衡模式和适用于城市-区域空气质量研究的气溶胶模式的特点, 并对发展一个完全的气溶胶动力-化学模式的复杂性进行了探讨, 指出未来气溶胶模式发展和改进还需要在有机气溶胶的形成和转化机制, 云、雾等条件下气溶胶的形成和转化, 以及复杂的气溶胶物理、化学过程与区域、全球模式的耦合等几个方面进行研究。  相似文献   

4.
本文基于对室外烟雾箱实验,探讨了SO_2的转化机制及影响SO_2转化的因素,由此并借助于烟团模型,建立了SO_2转化和硫酸盐气溶胶细粒子生成的数值模型,用于估算从排放源排入大气的SO_2浓度及其转化成硫酸盐细粒子的浓度以及它们的空间分布,与实测结果相比,两者有较好的一致性.同时指出,由于大气中细粒子(粒径小于1μm)可通过人体呼吸进入并沉积在肺泡中而对健康有不利影响,从而说明研究大气中细粒子污染的迫切性.  相似文献   

5.
大气气溶胶吸湿性质国内外研究进展   总被引:14,自引:1,他引:13  
大气气溶胶的吸湿性质是联系气溶胶微物理、化学参数的桥梁和纽带之一,更是气溶胶基本光学性质的决定性参数之一,因此研究气溶胶吸湿性质在整个大气气溶胶科学研究中处于基础地位。对气溶胶吸湿性质的研究意义、研究方法与技术、主要研究结论做了系统回顾,并指出该研究领域存在的不足并对未来的研究方向做出展望。众多研究者从实验室分析、外场实验、数值模拟3个方面来研究颗粒物的吸湿性质,研究表明大气气溶胶的吸湿性质对研究大气能见度、大气辐射强迫具有重要影响。国内对大气气溶胶吸湿性质的研究数量偏少,研究方法单一,在国内广泛开展气溶胶吸湿性质的研究非常必要。  相似文献   

6.
青藏高原大气气溶胶研究进展   总被引:1,自引:0,他引:1  
文中综述了近30年来青藏高原大气气溶胶的研究现状,包括青藏高原大气气溶胶光学厚度、气溶胶面密度等的时空变化特征,大气气溶胶化学成分分析及气候效应的研究等。大多利用卫星、激光雷达及地面采样等资料分析研究气溶胶。青藏高原大气气溶胶研究已经取得了显著进展。文中主要综述了该领域的研究成果,并对其今后的研究进行了展望。   相似文献   

7.
地球系统模式是研究全球气候与生态环境变化问题的重要工具,气溶胶与大气化学模式负责为其中的大气环流模式提供与气候效应有关的气态化学物质和气溶胶成分。本文在全球嵌套网格空气质量预报模式系统的基础上发展了一个适用于中国科学院地球系统模式(CAS-ESM)耦合计算的气溶胶与大气化学分量模式(IAP-AACM),采用简化的气相化学机制,不仅考虑了人为气溶胶,同时考虑了海盐、沙尘和二甲基硫等自然气溶胶及其前体物的在线排放。评估结果表明,IAP-AACM氧化剂插值计算可靠,采用简化机制和碳键机制(CBM-Z)模拟的差异较小。和观测的对比表明,得益于CAS-ESM的气溶胶双向反馈作用,简化版能够较好地抓住气溶胶及其前体物的空间分布,为IAP-AGCM提供可靠的气溶胶模拟。另外,简化版能大幅提升计算效率,满足CAS-ESM耦合长期积分的需求。为了在全球气候变化的研究中提供更完善的气溶胶模拟,未来考虑在IAP-AACM中增加氮化学和臭氧平流层化学机制。  相似文献   

8.
在大气化学实验室以及大气本底、酸雨和沙尘暴等观测站网长期工作基础上,作为"大气成分轨道"的主要牵头实施单位,大气成分观测与服务中心积极按照中国气象局业务技术体制改革总体方案精神,按照"立足现有、统筹规划、重点突出、分步建设"基本思路,设计建设大气成分研究型业务体系,保证了各项科研、业务和服务工作的顺利开展.目前初步形成了12个研究和业务团队:气溶胶、温室气体及相关微量成分、反应性气体与大气光化学、臭氧与辐射、酸雨、边界层、数值同化、大气成分数值模拟、化学输送数值模拟、大气成分气候效应、大气成分反转数值模拟、常规预报要素分析.2005年在研和新获准的各类国家级和省部级科研项目达30多项.  相似文献   

9.
气溶胶影响云和降水的机理和观测研究进展   总被引:5,自引:3,他引:2  
李军霞  银燕  李培仁  徐芬 《气象科学》2014,34(5):581-590
气溶胶对云和降水的影响,对于气候系统、大气环境以及水循环至关重要。气溶胶粒子作为云凝结核和大气冰核影响云的微物理过程,进而影响雨、雪、雹和其他形式的降水。近年来,在理解气溶胶的化学成分,气溶胶微物理特性以及气溶胶作为云凝结核和大气冰核影响云降水等方面已取得重大进展。本文对于气溶胶的概念、来源以及气溶胶的直接和间接效应进行了简要概述,重点总结了国内外在气溶胶影响云和降水的机理研究方面的成果,回顾了近年来利用卫星、地面观测设备、机载探测设备等对气溶胶和云进行遥感观测和直接观测所获得的观测事实并讨论了其可能的物理机制,在总结前人研究成果的基础上对未来的研究方向进行了讨论。  相似文献   

10.
大气化学机理的发展及应用   总被引:3,自引:0,他引:3  
大气化学机理是研究大气化学过程的重要手段和方法之一,也是发展空气质量模式必不可少的重要组成部分。作者综述了几种应用广泛的简化机理——碳键机理(Carbon Bond Mechanism,CBM)、加州大气污染研究中心机理(Statewide Air Pollution Research Center mechanism,SAPRC)、区域酸沉降机理(Regional Acid Deposition Mechanism,RADM)、区域大气化学机理(Regional Atmospheric Chemical Mechanism,RACM)以及详细化学机理——主要大气化学机理(Master Chemical Mechanism,MCM)和共同代表性中间体机理(Common Representative Intermediates,CRI)的发展及应用。对上述大气化学机理的产生、发展、包含的物种类型、集总方式等方面进行了对比分析,总结了采用烟雾箱数据评价大气化学机理的研究成果以及大气化学机理在模式发展方面的应用,并对大气化学机理的进一步发展与完善提出了需求。  相似文献   

11.
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA) formation from naturally emitted volatile organic compounds(BVOCs). We review the major laboratory and field findings with regard to effects of anthropogenic pollutants(NOx, anthropogenic aerosols, SO_2, NH_3) on biogenic SOA formation. NOx participate in BVOC oxidation through changing the radical chemistry and oxidation capacity, leading to a complex SOA composition and yield sensitivity towards NOx level for different or even specific hydrocarbon precursors. Anthropogenic aerosols act as an important intermedium for gas–particle partitioning and particle-phase reactions, processes of which are influenced by the particle phase state, acidity, water content and thus associated with biogenic SOA mass accumulation. SO_2 modifies biogenic SOA formation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzed heterogeneous reactions. Some new SO_2-involved mechanisms for organosulfate formation have also been proposed.NH_3/amines, as the most prevalent base species in the atmosphere, influence biogenic SOA composition and modify the optical properties of SOA. The response of SOA formation behavior to these anthropogenic pollutants varies among different BVOCs precursors. Investigations on anthropogenic–biogenic interactions in some areas of China that are simultaneously influenced by anthropogenic and biogenic emissions are summarized. Based on this review, some recommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution to the total SOA budget. This study also highlights the importance of controlling anthropogenic pollutant emissions with effective pollutant mitigation policies to reduce regional and global biogenic SOA formation.  相似文献   

12.
The influence of surface tension on the formation of secondary organic aerosol (SOA) is investigated in this study using a size-dependent absorptive partitioning model. A theoretical framework is offered to estimate the surface tension of multi-component aerosols consisting of organic compounds and water. The size-dependent influence of surface tension on the absorptive partitioning of semi-volatile organic compounds is examined via numerical simulations of systems of representative pre-existing aerosol (PA) components and semi-volatile organic compounds that have been observed to constitute SOA. Results indicate that if nonpolar organic species constitute a significant fraction of the PA, the Kelvin effect on SOA formation may be negligible. However, if PA is dominated by polar organic compounds, the Kelvin effect on SOA formation is significant when the PA initial diameter is smaller than approximately 200 nm. If the PA is an aqueous aerosol, the Kelvin effect on SOA formation is most important. A simplified computational scheme for estimation of the Kelvin effect is developed in this study and feasibly could be coupled into three-dimensional air quality models that simulate SOA formation. Available observations also suggest that future modeling and analysis of SOA formation may need to consider the Kelvin effect. Concrete testing of the purely theoretical model presented here requires carefully designed observations that examine the phase distribution of secondary organic compounds between the gas phase and aerosol particles small enough to be affected by surface tension.  相似文献   

13.
As Volatile Organic Compounds(VOCs) are one of the precursors of ozone, their distribution and variable concentrations are highly related to local ozone pollution control. In this study, we obtained vertical profiles of VOCs in Shanghai's Jinshan district on 8 September and 9 September in 2016 to investigate their distribution and impact on local atmospheric oxidation in the near surface layer. Vertical samples were collected from heights between 50 m and 400 m by summa canisters using an unmanned aerial vehicle(UAV). Concentrations of VOCs(VOCs refers to the 52 species measured in this study) varied minimally below 200 m, and decreased by 21.2% from 100 m to 400 m. The concentrations of VOCs above 200 m decreased significantly in comparison to those below 200 m. The proportions of alkanes and aromatics increased from 55.2% and 30.5% to 57.3% and 33.0%, respectively. Additionally, the proportion of alkenes decreased from 13.2% to 8.4%. Toluene and m/p-xylene were the key species in the formation of SOA and ozone. Principal component analysis(PCA) revealed that the VOCs measured in this study mainly originated from industrial emissions.  相似文献   

14.
A laboratory study was carried out to investigate the secondary organic aerosol products from photooxidation of the aromatic hydrocarbon toluene. The laboratory experiments consisted of irradiating toluene/propylene/NOx/air mixtures in a smog chamber operated inthe dynamic mode and collecting submicron secondary organic aerosol samples through a sampling train that consisted of an XAD denuder and a ZefluorTM filter. Oxidation products in the filter extracts were treated using O-(2,3,4,5,6,-pentafluorobenzyl)-hydroxylamine (PFBHA) to derivatize carbonyl groups followed by treatment with N,O-Bis(trimethylsilyl)-acetamide (BSTFA) to derivatize OH groups. The derivatized products were detected with a positive chemical ionization (CI) gas chromatography ion trap mass spectroscopy (GC-ITMS) system. The results of the GC-ITMS analyses were consistent with the previous studies that demonstrated the formation of multi-functional oxygenates. Denuder results showed that many of these same compounds were present in the gas, as well as, the particle phase. Moreover, evidence was found for a series of multifunctional acids produced as higher order oxidation products of the toluene/NOx system. Products having nearly the same mass spectrumwere also found in the ambient environment using identical analytical techniques. These products having multiple acid and alcoholic-OH moieties have substantially lower volatility than previously reported SOA products of the toluene photooxidation and might serve as an indicator for aromatic oxidation in the ambient atmosphere.  相似文献   

15.
To investigate the impacts of relative humidity(RH) on secondary organic aerosol(SOA) concentrations and chemical reactions, the carbonaceous aerosol components [i.e., organic carbon(OC) and element carbon(EC)] were quantified in daily PM2.5 samples collected at a background site in East China during summer 2015. Based on the method of EC-tracer, the concentration of secondary organic carbon(SOC) demonstrated an obvious negative relationship with RH higher than 60%. Moreover, the ratio of SOC/EC also exhibited obvious decreasing trends with increasing RH, indicating negative effects for chemical production of SOA under high RH conditions. Due to high RH,photochemistry was weakened, gaseous oxidant concentrations was lowered(e.g., significantly decreased O3 levels),and the production rates of SOA were relatively low. On the other hand, because of more water uptake under higher RH conditions, the aerosol droplet acidity was reduced and enhancement of SOA formation by acidity was accordingly absent. In addition, high RH also plays an important role in changing viscosity of pre-existing aerosol coatings,which can affect reactive uptake yield of SOA. Overall, the results from this study imply that SOA production may be more associated with photochemical processes, while aqueous-phase chemistry is not very important for some SOA formation in a moist ambient environment. In the ambient atmosphere, oxidant concentrations, reaction rates,airborne species, etc., are highly variable. How do these factors affect SOA yields under given ambient environment warrants further detailed investigations.  相似文献   

16.
The formation of secondary organic aerosol (SOA) results from the absorption of gas-phase organic oxidation products by airborne aerosol. Historically, modeling the formation of SOA has relied on relatively crude estimates of the capability of given parent hydrocarbons to form SOA. In more recent work, surrogate organic oxidation products have been separated into two groups, hydrophobic and hydrophilic, depending on whether the product is more likely to dissolve into an organic or an aqueous phase, respectively. The surrogates are then allowed to partition only via the dominant mechanism, governed by molecular properties of the surrogate molecules. The distinction between hydrophobic and hydrophilic is based on structural and physical characteristics of the compound. In general, secondary oxidation products, because of low vapor pressures and high polarities, express affinity for both the organic and aqueous aerosol phases. A fully coupled hydrophobic-hydrophilic organic gas-particle partitioning model is presented here. The model concurrently achieves mass conservation, equilibrium between the gas phase and the organic aerosol phase, equilibrium between the gas phase and the aqueous aerosol phase, and equilibrium between molecular and ionic forms of the partitioning species in the aqueous phase. Simulations have been performed using both a zero-dimensional model and the California Institute of Technology three-dimensional atmospheric chemical transport model. Simultaneous partitioning of species by both mechanisms typically leads to a shift in the distribution of products to the organic aerosol phase and an increase in the total amount of SOA predicted as compared to previous work in which partitioning is assumed to occur independently to organic and aqueous phases.  相似文献   

17.
18.
Global secondary organic aerosol formation (SOA) is currently assumed to be between 11.2 and 270 Tg/yr. This range of uncertainty is reflected in the gas-phase chemistry. In this study, we focus on the feedback of SOA formation on the concentrations of most important trace gases such as ozone, and compare it to the impact of monoterpene gas-phase chemistry with a newly developed reduced monoterpene mechanism (MMM) for either α- or β-pinene in the global chemistry transport model MATCH-MPIC. With this set-up an uncertainty range of 3.5–4.0% increase in annually averaged tropospheric ozone was found to be caused by the gas-phase chemistry of the investigated monoterpenes. Moreover, a strong feedback has been observed for NOx, HCHO, HNO3 and PAN. These observations are affected remarkably by different SOA formation approaches like partitioning or saturation vapour pressure limitation and by the structure of the monoterpene used, e.g. reducing the impact on tropospheric ozone to 1.2–1.9% by using the partitioning approach versus the simulation with gas-phase chemistry only. Therefore, a consideration of the individual processes associated with SOA formation seems to be necessary to reduce the uncertainty in SOA formation and to understand the impact of VOCs on atmospheric chemistry. An erratum to this article is available at .  相似文献   

19.
(NH4)2SO4, CaCl2, Na2SiO3 and NaNO3 were selected as surrogates of inorganic seed aerosols of ambient atmosphere of Chinese urban areas, respectively, to study their effects on the formation of secondary organic aerosol (SOA) in the toluene/CH3ONO/NOx photooxidation system. The SMPS and aerosol laser time-of-flight mass spectrometer (ALTOFMS) was used to measure the aerodynamic size and chemical composition of individual SOA particles in real-time. Experimental results indicate that either the growth or products of SOA is affected by the presence of inorganic seed aerosol. Inorganic seed aerosols would promote growth rates of SOA formation at the start of the reaction and inhibits its formation rate with prolonging the reaction time. In the case of about 100 μg m?3 seed aerosol load, the addition of Na2SiO3 induced a same growth rate of SOA formation as NaNO3. The influence of four individual seed aerosols on the generation of SOA decreased in the order of CaCl2 > (NH4)2SO4 > NaNO3, Na2SiO3. The presence of Na2SiO3 or NaNO3 has no obvious effect on the growth rates of SOA formation, but it does increase the yield of organic acid and nitrogen-containing organic compounds, respectively. Besides the significantly effect on the growth rate of SOA formation, the presence of CaCl2 or (NH4)2SO4 can lead to the formation of high-molecular weight species which is found to be positively correlated with the hygroscopic behavior of seed aerosols. The CaCl2 shows the strongest hygroscopic behavior among the four individual seed aerosols, and the most significant promotion effect on the formation of the high-molecular weight species. It is proposed that the SOA generation enhancement and high-molecular weight products are achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of CaCl2 and (NH4)2SO4 seed aerosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号