首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because total UV(TUV) in the UV-A region is 100 times higher than in the UV-B region,UV-A is a considerable component when calculating erythemal UV(EUV) and UV-index.The ratio of EUV to TUV in the UV-A value [EUV(A)/TUV(A)]is investigated to convert the EUV(A) from TUV(A) for broadband observation. The representative value of EUV(A)/TUV(A),from the simulation study,is 6.9 × 10-4,changing from 6.1 × 10-4to 7.0 × 10-4as aerosol optical depth,total ozone and solar zenith angle change. By adopting the observational data of EUV(B) and TUV(A) from UV-biometer measurements at Yonsei University [(37.57?N,126.95?E),84 m above sea level],the EUV irradiance increases to 15% of EUV(B) due to the consideration of EUV(A) from the data of TUV(A) observation. Compared to the total EUV observed from the Brewer spectrophotometer at the same site,the EUV(B) from the UV-biometer observes only 95% of total EUV,and its underestimation is caused by neglecting the effect of UV-A. However,the sum of EUV(B) and EUV(A) [EUV(A+B)] from two UV-biometers is 10% larger than the EUV from the Brewer spectrophotometer because of the spectral overlap effect in the range 320–340nm. The correction factor for the overlap effect adjusts 8% of total EUV.  相似文献   

2.
Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (~0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97~1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09~0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.  相似文献   

3.
The influence of various cloud parameters and the interactions with the ground albedo and the solar zenith angle have been studied by means of model simulations. The radiative transfer model suitable for a cloudy atmosphere as well as for a clear atmosphere has been developed on the basis of the Discrete Ordinate Method. This study leads to a general understanding for cloudy atmospheres: in the presence of a uniform cloud, the cloud scattering is dominant to molecular and aerosol scattering, and it is also wavelength-independent; the ratio of transmitted irradiance in a cloudy atmosphere to that in the background clear atmosphere is independent of cloud height and solar zenith angle. That’s to say, the radiation downwelling out of a cloud is quite isotropic; it decreases approximately exponentially with the cloud optical depth at a rate related to the ground albedo; the reflected irradiance at the top of the atmosphere is dependent on cloud optical depth as well as on solar zenith angle, but not on ground albedo for clouds of not very thin optical depth.  相似文献   

4.
Desert targets for solar channel calibration of geostationary satellites in the East Asia — Australian region were selected and their qualities were assessed with aid of Moderate Resolution Imaging Spectroradiometer data (i.e., white-sky surface albedo, aerosol optical thickness, and cloud fraction) from 2002 to 2008. The magnitude, spatial uniformity, and temporal stability of the white-sky surface albedo are examined in order to select bright and stable targets. Subsequently those selected targets over China, India, and Australia are further checked for their qualities in terms of data yielding ratio, aerosol optical thickness, cloud fraction, satellite viewing angle, and solar zenith angle. Results indicate that Chinese targets are found to be not adequate as calibration targets in spite of excellent surface conditions because of high percentage of cloud, possibly heavy aerosol loading, and lower solar elevation angle in particular during winter time. Indian site should be take care about relatively high temporal variation of surface condition and heavy aerosol loading. On the other hand, Australian desert targets are considered to be best when surface brightness, spatial and temporal stability, data yielding ratio, aerosol, and cloud are counted.  相似文献   

5.
The role of clouds in photodissociation is examined by both modelling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.As far as the modelling aspect is concerned, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes, and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption, and Mie scattering and absorption by cloud drops and aerosols should be taken into account.Further, a three-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle, and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the incloud actinic flux is given as a function of in-cloud optical thickness. The three-layer model seems to be a useful model for the estimation of photodissociation rates in dispersion models.It is stressed that both models in their present form cannot handle partial cloudiness.It is shown that if no clouds are present, the actinic flux depends primarily on solar zenith angle. Further, the incident flux at the top of the atmosphere diminishes downward into the atmosphere due to the increasing effect of scattering. Therefore, the actinic flux usually increases with height, although above clouds the actinic flux sometimes decreases with height due to a large contribution of the upward scattered light.For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness. Cloud optical thickness determines cloud albedo. It can be shown that incloud characteristics and cloud height are less important while describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud.Finally, using the photostationary state relationship, a comparison is performed between model results and ground-based measurements as well as in-cloud air craft measurements.  相似文献   

6.
Atmospheric aerosols influence the earth's radiative balance directly through scattering and absorbing solar radiation, and indirectly through affecting cloud properties. An understanding of aerosol optical properties is fundamental to studies of aerosol effects on climate. Although many such studies have been undertaken, large uncertainties in describing aerosol optical characteristics remain, especially regarding the absorption properties of different aerosols. Aerosol radiative effects are considered as either positive or negative perturbations to the radiation balance, and they include direct, indirect (albedo effect and cloud lifetime effect), and semi-direct effects. The total direct effect of anthropogenic aerosols is negative (cooling), although some components may contribute a positive effect (warming). Both the albedo effect and cloud lifetime effect cool the atmosphere by increasing cloud optical depth and cloud cover, respectively. Absorbing aerosols, such as carbonaceous aerosols and dust, exert a positive forcing at the top of atmosphere and a negative forcing at the surface, and they can directly warm the atmosphere. Internally mixed black carbon aerosols produce a stronger warming effect than externally mixed black carbon particles do. The semi-direct effect of absorbing aerosols could amplify this warming effect. Based on observational (ground-and satellite-based) and simulation studies, this paper reviews current progress in research regarding the optical properties and radiative effects of aerosols and also discusses several important issues to be addressed in future studies.  相似文献   

7.
Among anthropogenic perturbations of the Earths atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day–1 decade–1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.  相似文献   

8.
Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to ?7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between ?50 W m?2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m?2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.  相似文献   

9.
The role of clouds in photodissociation is examined by both modeling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. (The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.) A 3-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the in-cloud actinic flux is given as a function of in-cloud optical thickness. The 3-layer model seems to be an useful model for estimation of photodissociation rates in dispersion models. Further, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption and Mie scattering and absorption by cloud drops and aerosols should be taken into account. It is stressed that both models are one-dimensional and as such are unable to deal with partial cloudiness. It is shown that if no clouds are present, the actinic flux depends primarily on the solar zenith angle. The actinic flux usually increases with height. For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness, which determines cloud albedo. It can be shown that in-cloud characteristics and cloud height are less important in describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud. Finally, using the photostationary state relationship, good agreement is found between model results and aircraft measurements.  相似文献   

10.
Solar surface insolation (SSI) represents how much solar radiance reaches the Earth??s surface in a specified area and is an important parameter in various fields such as surface energy research, meteorology, and climate change. This study calculates insolation using Multi-functional Transport Satellite (MTSAT-1R) data with a simplified cloud factor over Northeast Asia. For SSI retrieval from the geostationary satellite data, the physical model of Kawamura is modified to improve insolation estimation by considering various atmospheric constituents, such as Rayleigh scattering, water vapor, ozone, aerosols, and clouds. For more accurate atmospheric parameterization, satellite-based atmospheric constituents are used instead of constant values when estimating insolation. Cloud effects are a key problem in insolation estimation because of their complicated optical characteristics and high temporal and spatial variation. The accuracy of insolation data from satellites depends on how well cloud attenuation as a function of geostationary channels and angle can be inferred. This study uses a simplified cloud factor that depends on the reflectance and solar zenith angle. Empirical criteria to select reference data for fitting to the ground station data are applied to suggest simplified cloud factor methods. Insolation estimated using the cloud factor is compared with results of the unmodified physical model and with observations by ground-based pyranometers located in the Korean peninsula. The modified model results show far better agreement with ground truth data compared to estimates using the conventional method under overcast conditions.  相似文献   

11.
12.
The online Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to simulate the effects of albedo enhancement on aerosol, radiation, and cloud interactions in the Greater Montreal Area during the 2011 heat wave period. We used a 2-way nested approach to capture the full impacts of meteorological and photochemical reactions in the urban atmosphere. We conducted four sets of simulations with and without aerosol estimations and convective parameterizations to explore the aerosol interactions with radiation and cloud in the urban atmosphere. The direct, semi-direct, and indirect effects of aerosols are analyzed. The meteorological performance of the model indicates that the model slightly underpredicts air temperature, overpredicts wind speed, and underpredicts relative humidity. The chemical component of the model indicates that the model tends to underpredict fine particulate matters and overpredict ozone and nitrogen dioxide concentrations. The surface reflectivity of roofs, walls, and grounds is increased from 0.2 to 0.65, 0.60, and 0.45, respectively. Albedo enhancement led to a net decrease in radiative balance at solar noon by 25 W/m2, a decrease in daily air temperature by 0.5 °C, a reduction in water mixing ratio to 0.5 g/kg, and a decline in cloud coverage by 3% in the center part of the domain. Increasing urban albedo caused a decrease in planetary boundary layer height by 25 m. Albedo enhancement affords a decrease in temperature-sensitive photochemical reaction rates and thus reduces daily ozone concentrations by 3 ppb across the entire domain. The concentration of daily fine particulate matters decreased by 3 μg/m3 in the center part of the GMA during the 2011 heat wave period.  相似文献   

13.
Summary This study investigated the impact of atmospheric aerosols on surface ultraviolet (UV) irradiance at Gwangju, Korea (35°13′N, 126°50′E). Data analyzed included surface UV irradiance measured by UV radiometers from June 1998 to April 2001 and the aerosol optical depth (AOD) in the visible range determined from a rotating shadow-band radiometer (RSR). The radiation amplification factor (RAF) of ozone for UV-B (280–315 nm) at Gwangju was 1.32–1.62. Values of the RAF of aerosols (RAFAOD) for UV-A and UV-B were 0.18–0.20 and 0.22–0.26, respectively. Authors’ addresses: Jeong Eun Kim, Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) and Korea Meteorological Administration (KMA); Seong Yoon Ryu, Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) and Division of Metrology, Korea Research Institute of Standards and Science (KRISS); Young Joon Kim, Advanced Environmental Monitoring Research Center (ADEMRC) Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea.  相似文献   

14.
The South-East Asian region experienced a haze episode in 1994 which was widely believed to be due to widespread forest fires in Sumatra and Kalimantan (Indonesia). Broadband measurements of the surface level solar ultraviolet-B, UV-A and Global radiation at Penang (Malaysia) are used to study the effect of the 1994 haze on effective UV-B irradiance. We find that during the haze episode, there is enhanced absorption of surface level UV-B radiation. The effect of haze on UV-A and Global radiation is much less. The reduction in absolute noon time UV-B irradiance (mostly cloud free) during the 1994 haze period was 23% relative to the UV-B irradiance during thecorresponding haze-free period in 1995. Even though the noon time radiation data minimizes the cloud effect in the results presented some cloud effect is still present.  相似文献   

15.
Clouds are extremely important with regard to the transfer of solar radiation at Earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When Sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using UVA and UVB pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Win−2 and 0.0169 Wm−2 were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of Sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed. C 1997 Elsevier Science B.V.  相似文献   

16.
The radiative energy exchange between arctic sea-ice and stratiform clouds is studied by means of aircraft measurements and a two-stream radiation transfer model. The data have been obtained by flights of two identically instrumented aircraft during the Radiation and Eddy Flux Experiments REFLEX I in autumn 1991 and REFLEX II in winter 1993 over the arctic marginal ice zone of Fram Strait. The instrumental equipment comprised Eppley pyranometers and pyrgeometers, which measure the solar and terrestrial upwelling and downwelling hemispheric radiation flux densities, and a line-scan-camera on one aircraft to monitor the surface structure of the sea-ice. An empirical parametrization of the albedo of partly ice-covered ocean surfaces is obtained from the data, which describes the albedo increasing linearly with the concentration of the snow-covered sea-ice and with the cosine of the sun zenith angle at sun elevations below 10°. Cloud optical parameters, such as single scattering albedo, asymmetry factor and shortwave and longwave height-dependent extinction coefficient are determined by adjusting modeled radiation flux densities to observations. We found significant influence of the multiple reflection of shortwave radiation between the ice surface and the cloud base on the radiation regime. Consistent with the data, a radiation transfer model shows that stratus clouds of 400 m thickness with common cloud parameters may double the global radiation at the surface of sea-ice compared to open water values. The total cloud-surface-albedo under these circumstances is 30% larger over sea-ice than over water. Parametrizations of the global and reflected radiation above and below stratus clouds are proposed on the basis of the measurements and modeling. The upwelling and downwelling longwave emission of stratus clouds with thicknesses of more than 500 m can be satisfactorily estimated by Stefan's law with an emissivity of nearly 1 and when the maximum air temperature within the cloud is used.  相似文献   

17.
The albedo of snow for different cloudiness conditions is an important parameter in the Earth's radiation budget analysis and in the study of snowpack's thermal conditions. In this study an efficient approximate method is derived to calculate the incident spectral solar flux and snow-cover albedo in terms of different atmospheric, cloud, and snow parameters. The global flux under partially cloudy skies is expressed in terms of the clear sky flux and a coefficient which models the effect of scattering and absorption by cloud patches and multiple reflections between the cloud base and snowcover. The direct and the diffuse components of the clear sky flux are obtained using the spectral flux outside the atmosphere and the spectral transmission coefficients for absorption and scattering by molecules and aerosols.The spectral snow reflectance model considers both specular surface reflection and volumetric multiple scattering. The surface reflection is calculated by using a crystal-shape-dependent bidirectional reflectance distribution function; the volumetric multiple scattering is calculated by using a crystal-size-dependent approximate solution in the radiative transfer equation. The input parameters to the model are atmospheric precipitable water, ozone content, turbidity, cloud optical thickness, the size and shape of ice crystals of snow and surface pressure. The model yields spectral and integrated solar flux and snow reflectance as a function of solar elevation and fractional cloudcover.The model is illustrated using representative parameters for the Antarctic coastal regions. The albedo for a clear sky depends inversely on the solar elevation. At high elevations the albedo depends primarily upon the grain size; at low elevation the albedo depends on grain size and shape. The gradient of the albedo-elevation curve increases as the grains become larger and faceted. The albedo for a densely overcast sky is a few percent higher than the clear-sky albedo at high elevations. A simple relationship between grain size and the overcast albedo is obtained. For a set of grain size and shape, the albedo as a function of solar elevation and fractional cloud cover is tabulated.  相似文献   

18.
发展了一个计算非均一大气条件下太阳辐射通量的一个简单而又精确的模式,其中包括关于大气球反射率与透过率的一个参数化表达式,并引入加权一次散射反照率和加权不对称因子,用于拟合非均一大气条件下计算辐射通量的四个经验订正因子。对清洁和浑浊的两类大气,都具有120060组的辐射通量模拟试验,以检验本模式的精度。这些模拟试验覆盖0-50的云光学厚度、0-0.8地表反射率、Junge和对数正态的气溶胶谱分布、-0.05气溶胶折射率虚部。在均一大气条件下,由本模式计算的120060组向上通量的标准差对清洁和浑浊两类大气分别为1.08%和1.04%;而向下通量的标准差分别为4.12%和3.31%。在非均一大气条件下,由本模式计算的向上通量的标准差对清洁和浑浊两类大气分别为3.01%和3.48%;而向下通量的标准差分别为4.54%和4.89%,其精度远优于均一假设下的计算结果。  相似文献   

19.
A simple yet more accurate semiempirical model is developed to calculate solar radiative flux in the optically inhomogeneous atmosphere. In the model a parameterized expression of spherical reflectance and transmitance of the atmosphere is confirmed, and the weighted single scatter albedo and weighted asymmetric factor are introduced to fit four empirical correction factors responsible for radiative fluxes in the inhomogeneous atmosphere. For both clean and turbid models, there are 120060 sets of radiative flux simulations for accuracy checks of the model, which cover 0-50 cloud optical depths, 0-0.8 surface reflectance, Junge and Log-normal aerosol size distributions, and 0-0.05 imaginary parts of aerosol refractive indexes. In case of the homogeneous atmosphere, standard errors of the 120060 upward fluxes from the present model are 1.08% and 1.04% for clean and turbid aerosol models, respectively; and those of the downward fluxes are 4.12% and 3.31%. In case of the inhomogeneous atmosphere, standard errors of the upw ard fluxes from the present model are 3.01% and 3.48% for clean and turbid aerosol models.respectively; and those of the downward fluxes are 4.54% and 4.89%, showing a much better accuracy than the results calculated by using an assumption of the homogeneous atmosphere.  相似文献   

20.
We have developed models of physically-based cloud and ocean surfacesfor use in photochemical models. These surface models are described in termsof a flux albedo and a normalized reflection function.Through these, the dependence of albedo on wavelength, solar zenithangle, cloud optical depth (cloud surfaces) and surface windspeed (ocean surfaces) are allowed for. In addition, the non-Lambertian nature of these surfaces is accounted for.We have integrated these surfacemodels into a multiple scattering radiative transfer model to assess their effects on the stratospheric radiation field and J-values. This was accomplished by comparison with results obtainedusing Lambertian, constant albedo surfaces. Comparisons of stratospheric radiation fields revealed that boththe wavelength and directional dependences of the cloud and oceansurfaces could be large effects.Differences between calculated J-values varied from 0 to 12% depending upon species, solar zenith angle, andheight.The J-values were then used as input for a chemical box model to examine the effects these surfaces had on stratospheric chemistry. Comparisons were made against box model runs using J-values fromconstant surfaces. Overall, the effect was on the order of 10%.Differences in number densities using these different surfacesvaried with latitude, height and species.Runs were made with and without heterogeneous chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号