首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 424 毫秒
1.
CINRAD/SA天气雷达在PPI扫描过程中天线来回摆动,导致雷达无规律出现方位扇形范围无回波,雷达不能正常发挥其有效作用。为查找故障原因,从新一代天气雷达伺服系统信号流程入手,结合雷达基数据分析软件,分析雷达天线运行轨迹,通过信号流程中关键点参数的测量和比较,发现问题出现在轴角编码盒方位环节,导致轴角盒串行方位轴角数据输出不连续,造成雷达无规律出现方位扇形范围无回波。通过对此类故障分析思路与处理经验的总结,对台站级雷达技术保障提供借鉴。  相似文献   

2.
天线伺服系统是CINRAD/SA天气雷达的重要组成部分,大部分组件长期处于机械运转中,且线路复杂,是雷达系统中故障率较高的部分,其中,闪码故障发生概率较大。本文对2007—2013年全国CINRAD/SA雷达站收集的68个闪码故障案例进行统计分析,结果表明,电机、旋转变压器、汇流环、轴角编码盒、光纤链路、数字控制单元等环节均有可能导致闪码。结合CINRAD/SA雷达伺服系统天线角码信号流程和关键点的参数特征,对可能导致雷达闪码故障的所有环节逐个进行分析,归纳总结出CINRAD/SA雷达出现此类故障的排查方法,并从收集的案例中选取5个典型个例展开分析。通过统计样本案例的故障归属,提出轴角闪码时检测部件的先后顺序,为各台站快速排除雷达闪码故障提供了思路,对解决其他天线伺服系统故障也有一定的借鉴意义。  相似文献   

3.
郭泽勇  梁国锋  敖振浪 《气象》2014,40(10):1266-1270
空间定位误差造成虚假回波,直接影响雷达观测资料的可靠性,对预报造成干扰。项目小组从全国各CINRAD/SA台站采集到17个空间定位故障案例,结合CINRAD/SA雷达天伺系统电信号流程和关键点的参数特征,对可能导致雷达空间定位误差的所有环节逐个进行分析,归纳总结出CINRAD/SA雷达空间定位误差诊断方法。最后从案例库中选取3个典型个例展开分析,对台站快速排除空间定位故障提供指导思路。  相似文献   

4.
CINRAD/SA雷达的伺服系统是整个雷达数字控制电路与机械电机联接的关键环节,它的故障造成雷达系统报警不断,俯仰环节的故障将导致系统无法工作。本文在杭州CINRAD/SA天气雷达中,选取了二个伺服系统故障导致系统无法工作的典型例子,对其进行系统分析,揭示它的故障成因,提出改进措施。  相似文献   

5.
李明元 《贵州气象》2012,36(6):56-59
对遵义雷达运行9a来12次元故障报警情况下,体扫自动抬升仰角不稳定典型故障进行归纳总结,认为:造成体扫不稳定的原因一方面是雷达体扫数据量少于扫描方位360。的80%或者相邻的两度无数据时,终端不发抬升仰角命令。另一方面是雷达俯仰控制到位精度不能满足要求,使发送了仰角命令而不能动作。造成仰角指令未发送主要有3个方面:①监控机与终端之间通信不畅导致方位角码变换不连续或数据采集量不够;②监控机与采集机之间的24针传输命令电缆故障;③方位角码变换单元故障导致角码变化不连续。造成俯仰控制精度不够主要有6个方面:①驱动误差电压出现异常;②俯仰伺服放大器的静态特性和动态特性发生变化;③俯仰伺服放大器板子上有元器件出现损坏;④俯仰的速度反馈出现故障;⑤汇流环出现故障;⑥天线反射体回差较大。  相似文献   

6.
周枫  刘朝林  邹蓓 《贵州气象》2012,36(5):47-48
近年来,贵州省遵义、毕节、兴义等3部CINRAD/CD型新一代天气雷达多次出现天线系统俯仰箱下沉与转台接触,天线方位旋转卡死的故障,根据几次故障的现象及维修中发现的问题将故障原因分析如下,并提出预防及解决的办法。  相似文献   

7.
CINRAD\CC天气雷达在伺服系统中也运用了先进的BITE技术,但对天线机械传动故障不能实时监控,导致因简单机械故障逐渐加重演变成为伺服系统的较大问题.针对新一代天气雷达出现的几次天线机械传动故障进行了详细的分析,提出了故障分析思路和排除方法.  相似文献   

8.
本文通过对两次出现冷却开关脱扣的故障的分析与排除,总结了由于一个小小的机柜散热风扇损坏,导致了雷达不能开机,造成雷达的资料短缺,影响了新一代天气雷达网资料的完整性,也影响了本站雷达资料传输质量。这类故障给了我们一个警示,对于没有损坏的元件从不主动更换,这是我们在维护维修工作中的一种误区。对此本文提出了对于易损原件要定期检查、更换,以及做好日常维护的重要性,使我们在今后的维护维修工作中更要勤于检查,发现问题及时处理。  相似文献   

9.
CINRAD/SA雷达伺服电机连续故障诊断分析   总被引:1,自引:0,他引:1  
CINRAD/SA天气雷达投入业务运行以来,在天线伺服系统方面出现了很多次故障,而直流方位电机是天线伺服系统的主要组成部分也是发生故障较多的部件之一。2014年福建长乐CINRAD/SA天气雷达在重大天气保障过程中,连续发生方位电机卡死造成雷达停机和测速机性能降低引起天线转速不稳造成雷达产品异常的故障;根据天线控制信号流程,通过运行雷达RDASOT测试程序、测量直流方位电机阻值、测量测速机反馈电压等方法,分析其故障的成因,对雷达伺服直流电机故障分析及解决方法有重要的指导作用。  相似文献   

10.
通过雷达误报警故障现象及前期排除该故障的过程,结合方位驱动工作原理,对比在用正常电路板与故障电路板相关插座和集成电路插脚的电压及分压电阻阻值,进行分析并排除了误报警故障后才发现雷达方位驱动不报警的真正故障。根据驱动箱方位驱动报警信号流程原理图,逐步测量主控箱和驱动箱都开启状态和主控箱开启而驱动箱关闭状态的方位驱动报警电平的通路,发现通路断路,经过检查所有插头座,发现断路点,重新焊接后故障彻底排除。  相似文献   

11.
根据雷达发射系统工作原理、故障现象和故障原因,对甘肃省新一代多普勒天气雷达运行多年来发生的20余次发射系统故障维修工作进行归纳总结。甘肃省新一代多普勒天气雷达发射系统故障可归纳为6类典型故障,对应找出具体维修措施,并给出了关键测试点的波形、调试指标,供技术人员参考;发射系统组成部件复杂,高压器件较多,维修难度大,维修人员需掌握系统组成和工作原理,然后进行故障分级判断和故障定位;发射系统维修常用检查仪器主要是示波器和三用表,因此要求技术保障人员熟练使用。随着雷达使用年限的增加,雷达设备故障率也在增加,而故障维修工作纷繁复杂,这就需要把雷达故障进行总结、分类,同一种类型的故障对应相应故障处理方法,这样就能大大提高雷达维修的时效性。  相似文献   

12.
L波段雷达探测系统几种特殊故障的处理   总被引:2,自引:0,他引:2  
为确保L波段雷达能准确、可靠、安全连续的正常运行,并在大气监测现代化建设中发挥应有的作用,雷达探测系统的保障将起到关键作用。文章针对东胜L波段雷达探测系统运行中出现的个例故障进行原因分析,并找出相应的解决办法,保证系统的正常运行。  相似文献   

13.
针对CINRAD/CD无机内测试信号的疑难故障案例,介绍如何借助大型电子设备规范化维修的理念和方法,结合雷达系统原理和信号流程,综合运用原理分析法、越级法、测量法、代替法等故障诊断方法进行分析与判断,逐步缩小故障排查范围,从而达到快速定位及排除故障的目的。最终确定该故障是由于接收与监控分机间的信号线断开,造成控制码没有送至微波组件内单刀双掷微波开关所导致的。文中提供了该类型故障的规范化维修流程,其诊断方法和思路可广泛应用于CINRAD技术保障工作中。  相似文献   

14.
梁华  柴秀梅  刘永强 《气象科技》2013,41(4):614-619
依据新一代天气雷达接收机系统工作原理及接收系统特性曲线关键点参数测量方法,结合对CINRAD/CC新一代天气雷达系统特性曲线异常故障的分析,提出了接收系统特性曲线异常故障诊断流程及处理方法,该方法在排除CINRAD/CC新一代天气雷达接收机特性曲线异常的故障实践中得到验证,结果表明:采用这种诊断流程和处理方法不仅快捷、有效,还具有规范性和稳定性,可为雷达技术保障人员处理各种型号新一代天气雷达接收机特性曲线异常故障提供借鉴.  相似文献   

15.
基于CINRAD/SA雷达图像产品出现"缺角"的现象,分析信号流程并通过BDAVC5软件观察天线运动轨迹,发现激磁电压过低导致旋转变压器有时辨识不出来正弦波信号,引起方位跳码,使得天线在未完成本仰角扫描的情况下就提前跳转到下一仰角进行扫描,从而造成了仰角剩余方位角度上的数据缺测。详细阐述了激磁电压过低而导致数据缺测的原因,指出此类故障多数发生在伺服系统,提出利用BDAVC5软件分析天线运行轨迹在伺服故障定位方面能起到很好的辅助作用。  相似文献   

16.
雷暴云电结构与闪电关系初探   总被引:1,自引:13,他引:1       下载免费PDF全文
利用雷暴云偶极性电结构理论,结合卫星和雷达资料分析了不同荷电结构下地面电场。结果表明:当正电荷中心高度越高、负电荷中心高度越低,形成的地面负电场越大,越有利于地闪的形成;负地闪发生后或云砧下方,地面电场成正极性,易引发正地闪;地闪分布与雷达回波、卫星云图中雷暴云位置基本一致,结合雷达和卫星资料可初步判断正/负地闪发生位置。  相似文献   

17.
CINRAD/SA雷达故障统计分析   总被引:1,自引:8,他引:1  
对石家庄CINRAD/SA雷达运行1年的故障情况进行了统计分析。介绍了常见告警信息,故障现象及处理办法。通过对雷达开机日数、故障日数、损坏器件情况、故障发生部位、告警信息、以及与环境温度的相关性分析,认为CINRAD/SA雷达运行状态与网络保障、计算机状况、环境温度等环境因素密切相关。现场的运行环境对CINRAD/SA雷达的运行状况影响较大。CINRAD/SA雷达发射机和天线控制系统故障较多,是日常维护的重点。为保障雷达正常运行,加强CINRAD/SA雷达网络安全管理、采用高性能计算机、做好雷达维护工作、保障良好的机房环境非常重要。  相似文献   

18.
根据使用CINRAD/CD新一代天气雷达过程中发现的雷达设备硬件和软件故障及维修实践,分析了发射系统人工线故障、雷达系统监控软件在网络正常运行情况下上传监控信息丢失字节、雷达回波同周围雷达相比回波强度存在明显误差及接收系统电源故障等问题的原因,并提出了快速准确的解决方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号