首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scientific interest in carbon sequestration on rangelands is largely driven by their extent, while the interest of ranchers in the United States centers on opportunities to enhance revenue streams. Rangelands cover approximately 30% of the earth's ice-free land surface and hold an equivalent amount of the world's terrestrial carbon. Rangelands are grasslands, shrublands, and savannas and cover 312 million hectares in the United States. On the arid and semi-arid sites typical of rangelands annual fluxes are small and unpredictable over time and space, varying primarily with precipitation, but also with soils and vegetation. There is broad scientific consensus that non-equilibrium ecological models better explain the dynamics of such rangelands than equilibrium models, yet current and proposed carbon sequestration policies and associated grazing management recommendations in the United States often do not incorporate this developing scientific understanding of rangeland dynamics. Carbon uptake on arid and semi-arid rangelands is most often controlled by abiotic factors not easily changed by management of grazing or vegetation. Additionality may be impossible to achieve consistently through management on rangelands near the more xeric end of a rangeland climatic gradient. This point is illustrated by a preliminary examination of efforts to develop voluntary cap and trade markets for carbon credits in the United States, and options including payment for ecosystem services or avoided conversion, and carbon taxation. A preliminary analysis focusing on cap and trade and payment for avoided conversion or ecosystem services illustrates the misalignment between policies targeting vegetation management for enhanced carbon uptake and non-equilibrium carbon dynamics on arid United States rangelands. It is possible that current proposed carbon policy as exemplified by carbon credit exchange or offsets will result in a net increase in emissions, as well as investment in failed management. Rather than focusing on annual fluxes, policy and management initiatives should seek long-term protection of rangelands and rangeland soils to conserve carbon, and a broader range of environmental and social benefits.  相似文献   

2.
放牧草地生态系统中氮素的损失和管理   总被引:13,自引:0,他引:13  
对于大多数放牧草地,N素都是限制生产力的最重要因素之一,而生态系统中N素的损失量又很大,N素以NO-3、NH3、N2O等形态进入水圈和大气圈,不仅造成了生产上的资源浪费,而且对全球环境和人类健康都产生了深远的影响。本文将对草地生态系统中N素损失的主要过程(如氮挥发、反硝化和NO-3淋溶等)及影响因素研究的进展情况进行简要地综述,然后对IMGARSS项目研究中关于N素损失研究部分提出一些建议。草地生态系统中N素损失的主要途径包括:土壤、植物、动物排泄物和肥料的氨挥发;生物和化学反硝化;淋溶;动物体和动物产品对N素的固持;动植物残体和动物排泄物的燃烧;动物以排泄物形式将N素从生产区转移到非生产区;通过土壤侵蚀而损失等。放牧加速了草地生态系统中N素的损失速率。从全球角度分析NH3的来源后认为,生物残体燃烧是最大的NH3源,其次是自然土地。对欧洲NH3来源的研究表明,与人类活动有关的NH3挥发总量的大部分来源于牲畜排泄物的氨挥发。由于方法的限制,对田间条件下的反硝化测定较少,动物排泄物对N2O的贡献及对全球变化影响的研究数据较少。但研究表明,草地尿、粪斑处N2O释放速率很高,动物排泄物可能是最重要的N2O源。在半干  相似文献   

3.
Many global land change scenarios are driven by demand for food, feed, fiber, and fuel. However, novel demands for other ecosystem services give rise to nexus issues and can lead to different land system changes. In this paper we explore the effects of including multiple different demands in land change scenarios. Our reference scenario is driven by demands for crop production, ruminant livestock production, and provisioning of built-up area. We then compare two alternative scenarios with additional demands for terrestrial carbon storage and biodiversity protection, respectively. These scenarios represent possible implementations of globally agreed policy targets. The simulated land system change scenarios are compared in terms of changes in cropland intensity and area, as well as tree and grassland area changes. We find that the carbon and biodiversity scenarios generally result in greater intensification and less expansion of cropland, with the biodiversity scenario showing a stronger intensification effect. However, the impact of setting the targets impacts different world regions in different ways. Overall, both scenarios result in a larger tree area compared to the reference scenario, while the carbon scenario also yields more grassland area. The land systems simulated while accounting for these additional demand types show strong patterns of specialization and spatial segregation in the provisioning of goods and services in different world regions. Our results indicate the relevance of including demands for multiple different goods and services in global land change assessments.  相似文献   

4.
Further cropland expansion might be unavoidable to satisfy the growing demand for land-based products and ecosystem services. A crucial issue is thus to assess the trade-offs between social and ecological impacts and the benefits of converting additional land to cropland. In the former Soviet Union countries, where the transition from state-command to market-driven economies resulted in widespread agricultural land abandonment, cropland expansion may incur relatively low costs, especially compared with tropical regions.Our objectives were to quantify the drivers, constraints and trade-offs associated with recultivating abandoned cropland to assess the potentially available cropland in European Russia, western Siberia, Ukraine and Kazakhstan—the region where the vast majority of post-Soviet cropland abandonment took place. Using spatial panel regressions, we characterized the socio-economic determinants of cropland abandonment and recultivation. We then used recent maps of changes in cropland to (i) spatially characterize the socio-economic, accessibility and soil constraints associated with the recultivation of abandoned croplands and (ii) investigate the environmental trade-offs regarding carbon stocks and habitat for biodiversity.Less cropland abandonment and more recultivation after 2000 occurred in areas with an increasing rural population and a younger labor force, but also improved yields. Synergies were observed between cropland recultivation and intensification over the 2000s. From 47.3 million hectares (Mha) of cropland abandoned in 2009, we identified only 8.5 (7.1–17.4) Mha of potentially available cropland with low environmental trade-offs and low to moderate socio-economic or accessibility constraints that were located on high-quality soils (Chernozems). These areas represented an annual wheat production potential of ∼14.3 (9.6–19.5) million tons (Mt). Conversely, 8.5 (4.2–12.4) Mha had high carbon or biodiversity trade-offs, of which ∼10% might be attractive for cropland expansion and thus would require protection from recultivation. Agro-environmental, accessibility, and socio-economic constraints suggested that the remaining 30.6 (25.7–30.6) Mha of abandoned croplands were unlikely to provide important contributions to future crop production at current wheat prices but could provide various ecosystem services, and some could support extensive livestock production. Political and institutional support could foster recultivation by supporting investments in agriculture and rural demographic revitalization. Reclaiming potentially available cropland in the study region could provide a notable contribution to global grain production, with relatively low environmental trade-offs compared with tropical frontiers, but is not a panacea to address global issues of food security or reduce land-use pressure on tropical ecosystems.  相似文献   

5.
Understanding potential future influence of environmental, economic, and social drivers on land-use and sustainability is critical for guiding strategic decisions that can help nations adapt to change, anticipate opportunities, and cope with surprises. Using the Land-Use Trade-Offs (LUTO) model, we undertook a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia’s agricultural land from 2013–2050, under interacting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land-uses and assessed the sustainability of economic returns and ecosystem services at high spatial (1.1 km grid cells) and temporal (annual) resolution. We found substantial potential for land-use transition from agriculture to carbon plantings, environmental plantings, and biofuels cropping under certain scenarios, with impacts on the sustainability of economic returns and ecosystem services including food/fibre production, emissions abatement, water resource use, biodiversity services, and energy production. However, the type, magnitude, timing, and location of land-use responses and their impacts were highly dependent on scenario parameter assumptions including global outlook and emissions abatement effort, domestic land-use policy settings, land-use change adoption behaviour, productivity growth, and capacity constraints. With strong global abatement incentives complemented by biodiversity-focussed domestic land-use policy, land-use responses can substantially increase and diversify economic returns to land and produce a much wider range of ecosystem services such as emissions abatement, biodiversity, and energy, without major impacts on agricultural production. However, better governance is needed for managing potentially significant water resource impacts. The results have wide-ranging implications for land-use and sustainability policy and governance at global and domestic scales and can inform strategic thinking and decision-making about land-use and sustainability in Australia. A comprehensive and freely available 26 GB data pack (http://doi.org/10.4225/08/5604A2E8A00CC) provides a unique resource for further research. As similarly nuanced transformational change is also possible elsewhere, our template for comprehensive, integrated, quantitative, and high resolution scenario analysis can support other nations in strategic thinking and decision-making to prepare for an uncertain future.  相似文献   

6.
Terrestrial ecosystems provide a range of important services to humans, including global and regional climate regulation. These services arise from natural ecosystem functioning as governed by drivers such as climate, atmospheric carbon dioxide mixing ratio, and land-use change. From the perspective of carbon sequestration, numerous studies have assessed trends and projections of the past and future terrestrial carbon cycle, but links to the ecosystem service concept have been hindered by the lack of appropriate quantitative service metrics. The recently introduced concept of the Greenhouse Gas Value (GHGV) accounts for the land-atmosphere exchanges of multiple greenhouse gases by taking into consideration the associated ecosystem pool sizes, annual exchange fluxes and probable effects of natural disturbance in a time-sensitive manner.We use here GHGV as an indicator for the carbon sequestration aspects of the climate regulation ecosystem service, and quantify it at global scale using the LPJ-GUESS dynamic global vegetation model. The response of ecosystem dynamics and ecosystem state variables to trends in climate, atmospheric carbon dioxide levels and land use simulated by LPJ-GUESS are used to calculate the contribution of carbon dioxide to GHGV. We evaluate global variations in GHGV over historical periods and for future scenarios (1850–2100) on a biome basis following a high and a low emission scenario.GHGV is found to vary substantially depending on the biogeochemical processes represented in LPJ-GUESS (e.g. carbon–nitrogen coupling, representation of land use). The consideration of disturbance events that occur as part of an ecosystem's natural dynamics is crucial for realistic GHGV assessments; their omission results in unrealistically high GHGV. By considering the biome-specific response to current climate and land use, and their projections for the future, we highlight the importance of all forest biomes for maintaining and increasing biogeochemical carbon sequestration. Under future climate and carbon dioxide levels following a high emission scenario GHGV values are projected to increase, especially so in tropical forests, but land-use change (e.g. deforestation) opposes this trend. The GHGV of ecosystems, especially when assessed over large areas, is an appropriate metric to assess the contribution of different greenhouse gases to climate and forms a basis for the monetary valuation of the climate regulation service ecosystems provide.  相似文献   

7.
Impacts of Climate Change on the Global Forest Sector   总被引:1,自引:0,他引:1  
The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.  相似文献   

8.
Global agroecosystems can contribute to both climate change mitigation and biodiversity conservation, and market mechanisms provide a highly prospective means of achieving these outcomes. However, the ability of markets to motivate the supply of carbon sequestration and biodiversity services from agricultural land is uncertain, especially given the future changes in environmental, economic, and social drivers. We quantified the potential supply of these services from the intensive agricultural land of Australia from 2013 to 2050 under four global outlooks in response to a carbon price and biodiversity payment scheme. Each global outlook specified emissions pathways, climate, food demand, energy price, and carbon price modeled using the Global Integrated Assessment Model (GIAM). Using a simplified version of the Land Use Trade-Offs (LUTO) model, economic returns to agriculture, carbon plantings, and environmental plantings were calculated each year. The supply of carbon sequestration and biodiversity services was then quantified given potential land use change under each global outlook, and the sensitivity of the results to key parameters was assessed. We found that carbon supply curves were similar across global outlooks. Sharp increases in carbon sequestration supply occurred at carbon prices exceeding 50 $ tCO2−1 in 2015 and exceeding 65 $ tCO2−1 in 2050. Based on GIAM-modeled carbon prices, little carbon sequestration was expected at 2015 under any global outlook. However, at 2050 expected carbon supply under each outlook differed markedly, ranging from 0 to 189 MtCO2 yr−1. Biodiversity services of 3.32% of the maximum may be achieved in 2050 for a 1 $B investment under median scenario settings. We conclude that a carbon market can motivate supply of substantial carbon sequestration but only modest amounts of biodiversity services from agricultural land. A complementary biodiversity payment can synergistically increase the supply of biodiversity services but will not provide much additional carbon sequestration. The results were sensitive to global drivers, especially the carbon price, and the domestic drivers of adoption hurdle rate and agricultural productivity. The results can inform the design of an effective national policy and institutional portfolio addressing the dual objectives of climate change and biodiversity conservation that is robust to future uncertainty in both national and global drivers.  相似文献   

9.
Livestock grazing on natural rangeland vegetation is one of the most extensive land uses on the earth, with important implications for livelihoods, food security and the environment. Factors such as population growth and urban development, a shift from resource-based to service-based economies, and intensification in the livestock industry change the extent and practice of grazing worldwide. We investigated how and why livestock grazing on public lands changed since 1940 in the High Divide region of the Northern Rocky Mountains through a detailed analysis of United States Forest Service (USFS) rangeland management records. Based on a 90-year land use history, we process-traced the proximate causes of changes in grazing, identified the decision-makers, and statistically tested which underlying factors were associated with changes in grazing. The forage annually consumed by livestock in our study area declined by 62% since 1940, the equivalent of about 33,000 fewer cows grazing on public lands for a three-month summer period. Livestock grazing was closed on 21% of the total allotment area. The reductions in grazing were mainly caused by land management and policy factors: evaluations of range condition (27%), carrying capacity estimates (21%) and legal and administrative requirements (14%) derived from the Endangered Species Act (ESA) and National Environmental Protection Act (NEPA). The socio-economic causes of ranch economics (14%) and amenity migration (8%) were comparatively small. Overlap with wilderness and proximity to amenity towns were significant spatial predictors of reductions in grazing. The fate of publicly-owned but privately-used rangelands largely depends on institutions that are able to reconcile the competing values and demands that influence how they are managed.  相似文献   

10.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

11.
Global change increasingly threatens nature, endangering the ecosystem services human wellbeing depends upon. Biodiversity potentially mediates these impacts by providing resilience to ecosystems. While biodiversity has been linked to resilience and ecosystem service supply on smaller scales, we lack understanding of whether mediating interactions between biodiversity and anthropogenic drivers are global and ubiquitous, and how they might differ between systems. Here, we examine the potential for biodiversity to mediate anthropogenic driver-ecosystem service relationships using global datasets across three distinct systems: mountains, islands and deltas. We found that driver-ecosystem service relationships were stronger where biodiversity was more intact, and weaker at higher species richness, reflecting the negative correlation between intactness and richness. Mediation was most common in mountains, then islands, then deltas; reducing with anthropogenic impact. Such patterns were found across provisioning and regulating ecosystem services, and occurred most commonly with climate change and built infrastructure. Further, we investigated the contribution of biodiversity and abiotic and anthropogenic drivers to ecosystem services. Ecosystem service supply was associated with abiotic and anthropogenic drivers alongside biodiversity, but all drivers were important to different ecosystem services. Our results empirically show the importance of accounting for the different roles that biodiversity plays in mediating human relationships with nature, and reinforce the importance of maintaining intact biodiversity in ecosystem functioning.  相似文献   

12.
The emissions reduction pledges made by individual countries through the 2015 Paris Agreement represent the current global commitment to mitigate greenhouse gas emissions in the face of the enduring climate crisis. Natural lands carbon sequestration and storage are critical for successful pathways to global decarbonization (i.e., as a negative emissions technology). Coastal vegetated habitats maintain carbon sequestration rates exceeding forest sequestration rates on a per unit area basis by nearly two orders of magnitude. These blue carbon habitats and their associated carbon sequestration benefits are vulnerable to losses from land-use change and sea-level rise. Incorporation of blue carbon habitats in climate change policy is one strategy for both maintaining these habitats and conserving significant carbon sequestration capabilities. Previous policy assessments have found the potential for incorporation of coastal carbon sequestration in national-level policies, yet there has – to date – been little inclusion of blue carbon in the national-scale implementation of Paris commitments. Recently, sub-national jurisdictions have gained attention as models for pathways to decarbonization. However, few previous studies have examined sub-national level policy opportunities for operationalizing blue carbon into climate decision-making. California is uniquely poised to integrate benefits from blue carbon into its coastal planning and management and its suite of climate mitigation policies. Here, we evaluated legal authorities and policy contexts addressing sequestration specifically from blue carbon habitats. We synthesized the progressive action in California’s approaches to mitigate carbon emissions including statutory, regulatory, and non-regulatory opportunities to incorporate blue carbon ecosystem service information into state- and local-level management decisions. To illustrate how actionable blue carbon information can be produced for use in decision-making, we conducted a spatial analysis of blue carbon sequestration in several locations in California across multiple agencies and management contexts. We found that the average market values of carbon sequestration services in 2100 ranged from $7,730 to $44,000 per hectare and that the social cost of carbon sequestration value was 1.3 to 2.7 times the market value. We also demonstrated that restoration of small areas with high sequestration rates can be comparable to the sequestration of existing marshes. Our results illustrate how accessible information about carbon sequestration in coastal habitats can be directly incorporated into existing policy frameworks at the sub-national scale. The incorporation of blue carbon sequestration benefits into sub-national climate policies can serve as a model for the development of future policy approaches for negative emissions technologies, with consequences for the success of the Paris Agreement and science-based decarbonization by mid-century.  相似文献   

13.
Earth’s life-support systems are in rapid decline, yet we have few metrics or indicators with which to track these changes. The world’s governments are calling for biodiversity and ecosystem-service monitoring to guide and evaluate international conservation policy as well as to incorporate natural capital into their national accounts. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has been tasked with setting up this monitoring system. Here we explore the immediate feasibility of creating a global ecosystem-service monitoring platform under the GEO BON framework through combining data from national statistics, global vegetation models, and production function models. We found that nine ecosystem services could be annually reported at a national scale in the short term: carbon sequestration, water supply for hydropower, and non-fisheries marine products, crop, livestock, game meat, fisheries, mariculture, and timber production. Reported changes in service delivery over time reflected ecological shocks (e.g., droughts and disease outbreaks), highlighting the immediate utility of this monitoring system. Our work also identified three opportunities for creating a more comprehensive monitoring system. First, investing in input data for ecological process models (e.g., global land-use maps) would allow many more regulating services to be monitored. Currently, only 1 of 9 services that can be reported is a regulating service. Second, household surveys and censuses could help evaluate how nature affects people and provides non-monetary benefits. Finally, to forecast the sustainability of service delivery, research efforts could focus on calculating the total remaining biophysical stocks of provisioning services. Regardless, we demonstrated that a preliminary ecosystem-service monitoring platform is immediately feasible. With sufficient international investment, the platform could evolve further into a much-needed system to track changes in our planet's life-support systems.  相似文献   

14.
Mismatches between the spatial scales of human decision-making and natural processes contribute to environmental problems such as global warming and biodiversity losses. People damage the environment through local activities like clearing land or burning fossil fuels, but the damages only become manifest at larger regional or global scales where no one pays for them. Payments for ecological services like carbon sequestration can correct for these damages caused by scale mismatches. This paper presents a spatially explicit land-use model to investigate the consequences of scale mismatches for pollination and carbon storage services and examine the effect of payment for only carbon storage services. The model integrates processes in multiple spatial scales ranging from the parcel level used by landowners’ decision about deforestation, to the larger scale used by animals to pollinate plants, and finally to the global scale where carbon storage services are supplied. We show that payment for carbon storage services can become an effective mechanism to protect forests at the same time that it creates inequities among landowners in income level.These findings suggest that market-based approaches that focus on conservation of a single ecosystem service may reproduce unequal power relations among landowners.  相似文献   

15.
Methane emissions from livestock enteric fermentation and manure management represent about 40% of total anthropogenic greenhouse gas emissions from the agriculture sector and are projected to increase substantially in the coming decades, with most of the growth occurring in non-Annex 1 countries. To mitigate livestock methane, incentive policies based on producer-level emissions are generally not feasible because of high administrative costs and producer transaction costs. In contrast, incentive policies based on sectoral emissions are likely administratively feasible, even in developing countries. This study uses an economic model of global agriculture to estimate the effects of two sectoral mitigation policies: a carbon tax and an emissions trading scheme based on average national methane emissions per unit of commodity. The analysis shows how the composition and location of livestock production and emissions change in response to the policies. Results illustrate the importance of global mitigation efforts: when policies are limited to Annex 1 countries, increased methane emissions in non-Annex 1 countries offset approximately two-thirds of Annex 1 emissions reductions. While non-Annex 1 countries face substantial disincentives to enacting domestic carbon taxes, developing countries could benefit from participating in a global sectoral emissions trading scheme. We illustrate one scheme in which non-Annex 1 countries collectively earn USD 2.4 billion annually from methane emission permit sales when methane is priced at USD 30/t CO2-eq.  相似文献   

16.
Blue carbon refers to the considerable amounts of carbon sequestered by mangroves, seagrass beds, tidal marshes and other coastal and marine vegetated ecosystems. At the present time, carbon market mechanisms to compensate those conserving blue carbon ecosystems, and thus reducing carbon emissions, are not yet in place. The ecosystem services provided by coastal vegetated ecosystems extend beyond their carbon storage capacity, and include their contribution to fishery production; shoreline protection; provision of habitat for wildlife and migratory species; flood water attenuation; nutrient cycling, pollution buffering; as well as their cultural, spiritual, subsistence and recreational uses. Because these services are of high economic, social and cultural value, the management and protection of blue carbon ecosystems could build collaboration between climate change and biodiversity practitioners on the national and international level. Such collaboration would also allow for the transfer of lessons learned from coastal management and conservation activities to carbon mitigation projects, and would include the need to work closely together with indigenous peoples and local communities. Resulting management activities on the local level could utilize and strengthen traditional knowledge and management systems related to blue carbon ecosystems, and increase both the resilience of biodiversity and that of coastal communities, as well as provide for long-term storage of blue carbon. While the challenge of scaling up local initiatives remains, some concrete examples already exist, such as the network of locally-managed marine areas (LMMAs) in the Pacific and beyond.  相似文献   

17.
The volume of agricultural trade increased by more than ten times throughout the past six decades and is likely to continue with high rates in the future. Thereby, it largely affects environment and climate. We analyse future trade scenarios covering the period of 2005–2045 by evaluating economic and environmental effects using the global land-use model MAgPIE (“Model of Agricultural Production and its Impact on the Environment”). This is the first trade study using spatially explicit mapping of land use patterns and greenhouse gas emissions. We focus on three scenarios: the reference scenario fixes current trade patterns, the policy scenario follows a historically derived liberalisation pathway, and the liberalisation scenario assumes a path, which ends with full trade liberalisation in 2045.Further trade liberalisation leads to lower global costs of food. Regions with comparative advantages like Latin America for cereals and oil crops and China for livestock products will export more. In contrast, regions like the Middle East, North Africa, and South Asia face the highest increases of imports. Deforestation, mainly in Latin America, leads to significant amounts of additional carbon emissions due to trade liberalisation. Non-CO2 emissions will mostly shift to China due to comparative advantages in livestock production and rising livestock demand in the region. Overall, further trade liberalisation leads to higher economic benefits at the expense of environment and climate, if no other regulations are put in place.  相似文献   

18.
IPCC第六次评估报告(AR6)第二工作组(WGII)报告的第二章表明,气候变化对陆地和淡水生态系统影响的范围和程度较前期评估结果更为严峻。人为气候变化导致生态系统结构、功能和恢复力恶化,生物群落转移,疾病的传播范围和发病率增加,野火燃烧面积增加和持续时间延长,局部地区物种灭绝,极端天气的频率和强度增加。未来气温升高2~4℃情景下,陆地和淡水生态系统中高灭绝风险物种占比为10%~13%,野火燃烧面积增加35%~40%,森林地区50%以上树木面临死亡风险,15%~35%的生态系统结构发生转变,碳损失持续增加,气温的升高将进一步加剧这些风险造成的严重且不可逆的影响。通过生态系统保护和恢复等人为适应和减缓措施,可以在一定程度的气候变化范围内保护生态系统的生物多样性并增强生态系统服务在气候变化下的恢复力。加剧的气候变化将阻碍适应措施的制定和实施,为保证措施的有效性需要考虑气候变化的长期影响并加快适应措施的部署。  相似文献   

19.
Deforestation has contributed significantly to net greenhouse gas emissions, but slowing deforestation, regrowing forests and other ecosystem processes have made forests a net sink. Deforestation will still influence future carbon fluxes, but the role of forest growth through aging, management, and other silvicultural inputs on future carbon fluxes are critically important but not always recognized by bookkeeping and integrated assessment models. When projecting the future, it is vital to capture how management processes affect carbon storage in ecosystems and wood products. This study uses multiple global forest sector models to project forest carbon impacts across 81 shared socioeconomic (SSP) and climate mitigation pathway scenarios. We illustrate the importance of modeling management decisions in existing forests in response to changing demands for land resources, wood products and carbon. Although the models vary in key attributes, there is general agreement across a majority of scenarios that the global forest sector could remain a carbon sink in the future, sequestering 1.2–5.8 GtCO2e/yr over the next century. Carbon fluxes in the baseline scenarios that exclude climate mitigation policy ranged from −0.8 to 4.9 GtCO2e/yr, highlighting the strong influence of SSPs on forest sector model estimates. Improved forest management can jointly increase carbon stocks and harvests without expanding forest area, suggesting that carbon fluxes from managed forests systems deserve more careful consideration by the climate policy community.  相似文献   

20.
Designing effective mitigation policies for greenhouse gas (GHG) emissions from agriculture requires understanding the mechanisms by which management practices affect emissions in different agroclimatic conditions. Agricultural GHG emissions and carbon sequestration potentials have been extensively studied in the Mediterranean biome, which is a biodiversity hot spot that is highly vulnerable to environmental changes. However, the absolute magnitude of GHG emissions and the extent to which research efforts match these emissions in each production system, are unknown. Here, we estimated GHG emissions and potential carbon sinks associated with crop and livestock production systems in the Mediterranean biome, covering 31 countries and assessing approximately 10,000 emission items. The results were then combined with a bibliometric assessment of 797 research publications to compare emissions estimates obtained with research efforts for each of the studied items. Although the magnitude of GHG emissions from crop production and the associated carbon sequestration potential (261 Tg CO2eq yr−1) were nearly half of those from livestock production (367 Tg CO2eq yr−1), mitigation research efforts were largely focused on the former. As a result, the relative research intensity, which relates the number of publications to the magnitude of emissions, is nearly one order of magnitude higher for crop production than for livestock production (2.6 and 0.4 papers Tg CO2eq−1, respectively). Moreover, this mismatch is even higher when crop and livestock types are studied separately, which indicates major research gaps associated with grassland and many strategic crop types, such as fruit tree orchards, fiber crops, roots and tubers. Most life cycle assessment studies do not consider carbon sequestration, although this single process has the highest magnitude in terms of annual CO2eq. In addition, these studies employ Tier 1 IPCC factors, which are not suited for use in Mediterranean environments. Our analytical results show that a strategic plan is required to extend on-site field GHG measurements to the Mediterranean biome. Such a plan needs to be cocreated among stakeholders and should be based on refocusing research efforts to GHG balance components that have been afforded less attention. In addition, the outcomes of Mediterranean field studies should be integrated into life cycle assessment-based carbon footprint analyses in order to avoid misleading conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号