首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
广西和贵州MCC暴雨过程综合分析   总被引:7,自引:2,他引:5       下载免费PDF全文
利用卫星云图、多普勒雷达资料和高空风等各种天气学资料,对2007年6月8~9日广西、贵州由中尺度对流复合体(MCC)引发的致洪暴雨过程进行了大尺度环境场和物理量的诊断分析.结果表明:MCC是造成暴雨的直接影响系统;低空急流的不连续后退向西发展,为MCC的生成和发展提供了充沛的水汽输送;MCC发生区对流层中低层随高度向西倾斜高能管的形成,维持了MCC发生区大气的对流不稳定性;华北高压底部东北气流带来的冷空气沿青藏高原东侧南下产生的锋生,有利于MCC的形成;对于MCC的生成发展、维持和消亡,在CAPPI(1.5 km)径向速度图上看到:首先有西南低空急流生成,接着在西南低空急流左侧出现气旋性辐合或经向辐合;和类似飑线的强对流云带的东移转向南压配合,生成范围很大的径向强辐散区;低空急流的减弱消失,预示着MCC的减弱或消散.  相似文献   

2.
利用MICAPS资料、多普勒天气雷达资料和NCEP资料等,对2013年7月25日黄土高原一次引发短时致洪暴雨MCC的特点及成因进行了分析。结果表明:300hPa天气尺度反气旋和500hPa天气尺度西南气流是MCC在对流层中上层的直接影响系统,700hPa α-中尺度横切变和850hPa副热带高压西侧α-中尺度低涡是MCC在对流层低层的直接影响系统;地面湿焓场低值舌的活动是MCC触发机制之一;地面湿焓场≥40℃高值中心区和MCC生成区相对应;MCC生成区在径向速度场上出现西南低空急流的生成和维持、逆风辐合区的生成和维持,低层辐合和高层强辐散的配置,为MCC的生成及暴雨的形成提供了动力条件;冷暖平流的配置也为MCC生成和东移发展创造了有利条件;空间剖面图上看到的湿螺旋度高值带对MCC生成发展和东移具有指示意义。   相似文献   

3.
利用NCEP1°×1°再分析资料、国家气象卫星中心云顶亮温和地面加密观测资料对2013年7月21—22日发生在陕南的暴雨天气过程进行中尺度诊断分析。结果表明:中尺度对流复合体(MesoConvectiveComplex,下简称MCC)是此次暴雨的直接影响系统;500hPa停滞的低槽,配合对流层高层急流分支出口的强辐散及对流层低层西南低涡的动力抬升作用,形成有利于MCC生成、发展的大尺度环流背景;700hPa西南低空急流、850hPa气流的南支分量为MCC的生成、发展提供充足的水汽和能量;西南低涡的东北移动伴随有MCC云团的生消发展,MCC的发展经历了生成、发展、成熟、消散四个阶段,陕南强降水位于云顶亮温等值线密集一侧;MCC发生在高能、弱对流不稳定区;露点锋加强暴雨区的垂直上升运动,系统北部冷空气与南侧西南暖湿气流导致低层锋生,大气斜压性增大,并在陕南地区产生辐合上升,形成次级环流,又触发对流不稳定释放,相互之间有正反馈的作用。  相似文献   

4.
一次西南涡引发MCC暴雨的卫星云图和多普勒雷达特征分析   总被引:4,自引:1,他引:3  
利用常规观测资料、自动站资料、卫星资料和多普勒雷达资料,对2008年6月30日至7月1日发生在滇东北和四川盆地南部一次暴雨天气过程的分析发现,850hPa四川盆地南部西南涡引发的中尺度对流复合体(mesoscale convective complex,MCC)是暴雨的直接影响系统,700hPa青藏高原东南侧西南涡引发的中尺度对流云团并入MCC后导致MCC迅速加强并向西移动。MCC生成于对流层高层急流出口区左侧强辐散区和低层强辐合区。雷达回波上“人”字形回波、平行短带回波和逆风区的出现说明MCC内部存在多个β中尺度对流系统,直接造成多个暴雨中心。MCC成熟阶段表现出中低层辐合和高层辐散的动力特征,其前沿中层以下有强气流流入,以上则有强气流流出。MCC消散阶段从低层到高层都有强西南气流进入,相应气流辐合减弱,失去中尺度组织结构。  相似文献   

5.
利用卫星云图、NCEP资料和MICAPS系统提供的实况资料和物理量等,对2008年7月23日江苏北部一次中尺度对流复合体(MCC)和暴雨天气过程进行诊断分析.结果表明:MCC是造成暴雨的直接影响系统;200 hPa中尺度反气旋环流的形成,配合500 hPa西南急流左侧切变线生成以及边界层925 hPa锋生与西南强风带或西南急流左侧中尺度低涡生成,有利于MCC生成和发展;925 hPa以下边界层10.7 m·s-1·km-1强风速垂直切变的形成.配合边界层正涡度中心生成、对流层高层辐散增强,是激发MCC生成和发展的动力机制;850 hPa江苏中北部MPV1≤-0.5 PVU的中尺度对流不稳定中心的生成,配合北方MPV2≥0.6 PVU湿斜压场纬向高值带的生成和稳定,有利于江苏北部地区中尺度强对流系统重复出现和MCC生成发展.  相似文献   

6.
利用卫星云图、NCEP资料和MICAPS系统提供的实况资料和物理量等,对2008年7月23日江苏北部一次中尺度对流复合体(MCC)和暴雨天气过程进行诊断分析。结果表明:MCC是造成暴雨的直接影响系统;200hPa中尺度反气旋环流的形成.配合500hPa西南急流左侧切变线生成以及边界层925hPa锋生与西南强风带或西南急流左侧中尺度低涡生成,有利于MCC生成和发展:925hPa以下边界层10.7m·s^-1·km^-1强风速垂直切变的形成,配合边界层正涡度中心生成、对流层高层辐散增强,是激发MCC生成和发展的动力机制;850hPa江苏中北部MPV1≤-0.5PVU的中尺度对流不稳定中心的生成,配合北方MPV2≥0.6PVU湿斜压场纬向高值带的生成和稳定,有利于江苏北部地区中尺度强对流系统重复出现和MCC生成发展。  相似文献   

7.
石昌军  白慧 《贵州气象》2008,32(1):24-25
利用常规天气图、物理量场和雷达回波等资料,对2006-06-26三都水族自治县的特大致洪暴雨天气过程进行综合分析.结果表明:此次特大暴雨过程的发生与500 hPa两高切变、中低层(低涡)切变和地面中尺度辐合线的共同作用密切相关.中低层偏南气流维持时间长、西南低空急流的建立和维持、对流层中低层辐合、高层辐散以及喇叭口地形的强化作用为特大暴雨的产生提供了充足的水汽、大量不稳定能量和持久的动力条件.  相似文献   

8.
张晓东 《气象科技》2010,38(5):550-557
利用NCEP再分析资料和天津多普勒雷达等资料,对2008年7月14—15日发生在河北唐山及天津一带的暴雨过程进行了分析,并通过MM5数值模拟阐述了雷达资料分析的正确性。结果表明:此次大暴雨发生在中低纬天气系统相互作用的背景下,700hPa高空槽、850hPa低涡及地面中尺度辐合线是引发此次暴雨主要影响系统;低空急流是暴雨主要的水汽来源;低空辐合高层辐散、锋面抬升是暴雨系统发展的动力机制;对流层中部冷空气活动引起的西南低空急流脉动与暴雨的增幅有密切关系;涡旋状和带状回波是主要降水回波。  相似文献   

9.
利用卫星云图、多普勒雷达资料和高空风等多种资料,对2007年7月17日四川东部和重庆西部由中尺度对流复合体(M CC)引发的致洪暴雨过程进行大尺度环境场和物理量的诊断分析。结果表明:M CC是造成暴雨的直接影响系统;M CC发生在200 hPa从西安至云南气流呈扇形分支而产生的强辐散区域内;在多普勒雷达径向速度图上,整个M CC致洪暴雨过程经历了4次从新生的γ中尺度径向辐合向γ中尺度气旋式辐合发展的过程,γ中尺度径向辐合和γ中尺度气旋式辐合是造成M CC致洪暴雨强降水中心的直接影响系统;回波顶高也揭示了M CC中γ中尺度强对流单体的发展;对流层中低层的正涡度平流、来自400~250 hPa的"干侵入"以及倾斜涡度的发展,对于M CC的生成、发展和维持也起着重要作用。  相似文献   

10.
利用常规气象资料及T213分析场资料,对2005年6月18日~23日华南大范围持续性暴雨过程的高低空形势、能量及动力条件进行诊断分析。发现:这次过程低空急流维持了低空对流不稳定形势,高空急流维持了高空辐散、低空辐合的有利形势,高空西南急流与高空西北急流一样,能造成暴雨区高空有利的辐散形势,形成高层辐散、底层辐合,触发强烈的上升运动,高低空耦合是此次强降雨爆发的重要机制,强降雨落区位于低空西南风急流出口区的左侧和200hPa西北风急流的出口区西南侧,即低空急流的左侧与切变线的前沿;暴雨区域高湿能条件的维持,保证了强降雨过程的能量供给,是强降雨持续的重要条件。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography.  相似文献   

15.
The variation of the East Asian jet stream(EAJS) associated with the Eurasian(EU) teleconnection pattern is investigated using 60-yr NCEP–NCAR daily reanalysis data over the period 1951–2010. The EAJS consists of three components: the polar front jet(PFJ); the plateau subtropical jet(PSJ); and the ocean subtropical jet(OSJ). Of these three jets over East Asia,the EU pattern exhibits a significant influence on the PFJ and OSJ. There is a simultaneous negative correlation between the EU pattern and the PFJ. A significant positive correlation is found between the EU pattern and the OSJ when the EU pattern leads the OSJ by about 5 days. There is no obvious correlation between the EU pattern and the PSJ. The positive EU phase is accompanied by a weakened and poleward-shifted PFJ, which coincides with an intensified OSJ. A possible mechanism for the variation of the EAJS during different EU phases is explored via analyzing the effects of 10-day high-and low-frequency eddy forcing. The zonal wind tendency due to high-frequency eddy forcing contributes to the simultaneous negative correlation between the EU pattern and the PFJ, as well as the northward/southward shift of the PFJ. High- and low-frequency eddy forcing are both responsible for the positive correlation between the EU pattern and the OSJ, but only high-frequency eddy forcing contributes to the lagged variation of the OSJ relative to the EU pattern. The negative correlation between the EU pattern and winter temperature and precipitation anomalies in China is maintained only when the PFJ and OSJ are out of phase with each other. Thus, the EAJS plays an important role in transmitting the EU signal to winter temperature and precipitation anomalies in China.  相似文献   

16.
<p>Using the multielements similarity measurement method and 1950–C2017 NCEP/NCAR gridded daily reanalysis datasets, we analyzed season duration in China during 1950–C2016, and we defined the element with maximum absolute sensitivity as the key impact element at each point using the sensitivity analysis method. The decadal change of season duration and its key impact element before and after 1980 were studied. The results indicated obvious meridional and zonal differences in the distribution of season duration for the 67-year average, and that the key impact element has the same distribution characteristics as season duration. In addition, complementary relationships were found between the durations of spring and summer, autumn and winter, and the cold and warm seasons. Of those, the complementary relationship between the durations of spring and summer was strongest and the regions of complementarity were numerous. The complementary regions of autumn and winter durations were found mainly in western China. In the cold and warm seasons, the complementary regions were widespread and the complementary relationship was generally weak. Comparison of the periods before and after 1980 revealed an east–Cwest difference in the interdecadal variation of season duration. Interdecadal variation in spring and summer was found concentrated in northern and western regions, while that in autumn and winter was concentrated in the western region. Areas of significant interdecadal variation of the key elements were found concentrated in northern and western regions, corresponding well with the areas of significant interdecadal variation of season duration.</p>  相似文献   

17.
By using the gauged rainfall in 160 stations within mainland China and the NCEP/NCAR reanalysis data, the impacts of anomalous SST in Kuroshio and its extension on precipitation in Northeast China were investigated. The results show that a difference in the meridional circulation such as the East Asia/Pacific teleconnection pattern(EAP)may be responsible for the difference in rainfall between 1998 and 2010. In comparison with 1998, the anomalous meridional circulation pattern in 2010 shifted northeastward, and then the western subtropical high, the mid-latitudinal trough and the northeastern Asia blocking high also shifted northeastward, causing intensified convergence of the cold and warm air masses at the southern region and thus more rainfall in the southwestern region and less in the northwestern region. In 1998, the anomalous cyclone, one component of the meridional pattern, located at the Songhuajiang-Nengjiang River basin, resulted in more rainfall in the majority of the area. The results of observation and the model show that the difference in SSTA in Kuroshio and its extension under the background of different El Ni觡o events is the key point:(1) The anomalous warmth moved westward from the mid-Pacific to the east of the Philippine Sea during the central event, which led the heat resources shifting to the northeast in 2010; subsequently, a shift occurred to the north of the anomalous ascent and decent, followed by a warm SSTA in the region of Kuroshio's extension in 2010 and Kuroshio in 1998.(2) The warm SSTA in the Kuroshio extension causing the Rossby wave activity flux strengthened in 2010, and then the westerly jet shifted northward and extended eastward. A warm SSTA in Kuroshio and cold SSTA in its extension in 1998 caused the westerly jet to shift southward and weaken. As a result,the anomalous anticyclone and cyclone shifted northward in 2010, and the blocking high also shifted northward.  相似文献   

18.
基于最新的GTAP8(Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Understanding potential future influence of environmental, economic, and social drivers on land-use and sustainability is critical for guiding strategic decisions that can help nations adapt to change, anticipate opportunities, and cope with surprises. Using the Land-Use Trade-Offs (LUTO) model, we undertook a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia’s agricultural land from 2013–2050, under interacting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land-uses and assessed the sustainability of economic returns and ecosystem services at high spatial (1.1 km grid cells) and temporal (annual) resolution. We found substantial potential for land-use transition from agriculture to carbon plantings, environmental plantings, and biofuels cropping under certain scenarios, with impacts on the sustainability of economic returns and ecosystem services including food/fibre production, emissions abatement, water resource use, biodiversity services, and energy production. However, the type, magnitude, timing, and location of land-use responses and their impacts were highly dependent on scenario parameter assumptions including global outlook and emissions abatement effort, domestic land-use policy settings, land-use change adoption behaviour, productivity growth, and capacity constraints. With strong global abatement incentives complemented by biodiversity-focussed domestic land-use policy, land-use responses can substantially increase and diversify economic returns to land and produce a much wider range of ecosystem services such as emissions abatement, biodiversity, and energy, without major impacts on agricultural production. However, better governance is needed for managing potentially significant water resource impacts. The results have wide-ranging implications for land-use and sustainability policy and governance at global and domestic scales and can inform strategic thinking and decision-making about land-use and sustainability in Australia. A comprehensive and freely available 26 GB data pack (http://doi.org/10.4225/08/5604A2E8A00CC) provides a unique resource for further research. As similarly nuanced transformational change is also possible elsewhere, our template for comprehensive, integrated, quantitative, and high resolution scenario analysis can support other nations in strategic thinking and decision-making to prepare for an uncertain future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号