首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
AGCMStudyontheMechanismofSeasonalAbruptChangesWangHuijun(王会军)andZengQingcun(曾庆存)(LASG,InstituteofAtmosphericPhysics,ChineseAc...  相似文献   

2.
AnEconomicalConsistentDisipationOperatorandItsApplicationstotheImprovementofAGCM①WangBin(王斌)andJiZhongzhen(季仲贞)LASG,Institute...  相似文献   

3.
Simulation of East Asian Summer Monsoon with IAP CGCM   总被引:1,自引:0,他引:1  
SimulationofEastAsianSummerMonsoonwithIAPCGCMChenQiying(陈起英),①YuYongqiang(俞永强)andGuoYufu(郭裕福)InstituteofAtmosphericPhysics,Ch...  相似文献   

4.
TheEfectofHeatingAnomalyontheAsianCirculation-AGCMExperiment①WangHuijun(王会军)LASG,InstituteofAtmosphericPhysics,ChineseAcademy...  相似文献   

5.
InternalDynamicsoftheGenerationofAtmosphericTeleconnectionPatternsLiZhijin(李志锦)andJiLiren(纪立人)(InstituteofAtmosphericPhysics,...  相似文献   

6.
ModellingtheInterannualVariationofRegionalPrecipitation over ChinaWangHuijum(王会军)(LASG,InstituteofAtmosphericPhysics,ChineseA...  相似文献   

7.
TeleconnectionPaternsintheNorthernHemisphereSimulatedbyIAPGCMXueFeng(薛峰)andZengQingcun(曾庆存)InstituteofAtmosphericPhysics,Chin...  相似文献   

8.
Modelling the January and July Climate of 9000 Years before Present   总被引:1,自引:3,他引:1  
ModellingtheJanuaryandJulyClimateof9000YearsbeforePresent¥WangHuijun(王会军)(LASG,InstituteofAtmosphericPhysics,ChineseAcademyof...  相似文献   

9.
Vertical Ozone Profile over Tibet Using Sage I and II Data   总被引:8,自引:0,他引:8  
VerticalOzoneProfileoverTibetUsingSageIandIData①ZouHan(邹捍)andGaoYongqi(郜永祺)InstituteofAtmosphericPhysics,ChineseAcademyofScie...  相似文献   

10.
A Bogus Typhoon Scheme and Its Application to a Movable Nested Mesh Model   总被引:1,自引:0,他引:1  
ABogusTyphoonSchemeandItsApplicationtoaMovableNestedMeshModelWangGuomin(王国民)(DepartmentofAtmosphericSciences,NamingUniversity...  相似文献   

11.
This study discusses the representation of the intraseasonal oscillation (ISO) in three simulations with the ECHAM4 atmosphere general circulation model (GCM). First, the model is forced by AMIP sea surface temperatures (SST), then coupled to the OPYC3 global ocean GCM and third forced by OPYC3 SSTs to clarify possible air-sea interactions and connections of the ISO and the ENSO cycle. The simulations are compared to ECMWF reanalysis data and NOAA outgoing longwave radiation (OLR) observations. Although previous studies have shown that the ECHAM4 GCM simulates an ISO-like oscillation, the main deficits are an overly fast eastward propagation and an eastward displacement of the main ISO activity, which is shown with a composite analysis of daily data between 1984 to 1988 for the reanalysis and the AMIP simulation, 25 years of the coupled integration, and a five year subset of the coupled SST output used for the OPYC3 forced atmosphere GCM experiment. These deficits are common to many atmospheric GCMs. The composites are obtained by principal oscillation pattern (POP). The POPs are also used to investigate the propagation speed and the interannual variability of the main ISO activity. The present coupled model version reveals no clear improvements in the ISO simulation compared to the uncoupled version forced with OPYC3 SSTs, although it is shown that the modeled ISO influences the simulated high-frequency SST variability in the coupled GCM. Within the current analysis, ECHAM4 forced by AMIP SSTs provides the most reasonable ISO simulation. However, it is shown that the maximum amplitudes of the annual cycle of the ISO variability in all analyzed model versions are reached too late in the year (spring and summer) compared to the observations (winter and spring). Additionally, the ENSO cycle influences the interannual variability of the ISO, which is revealed by 20 years of daily reanalysis data and 100 years of the coupled integration. The ENSO cycle is simulated by the coupled model, although there is a roughly 1 K cold bias in the East Pacific in the coupled model. This leads to a diminished influence of the ENSO cycle on the spatial variability of the modeled ISO activity compared to observations. This points out the strong sensitivity of the SST on the ISO activity. Small biases in the SST appear to cause large deterioration in the modeled ISO.  相似文献   

12.
The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results from Atmospheric Model Intercomparison Project(AMIP)experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter(June?July?August)SAM is significant,with an intermodel standard deviation of 0.28(10 yr)?1,larger than the multimodel ensemble mean of 0.18(10 yr)?1.This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature(SST).Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes,referred to as the Southern Ocean Dipole(SOD).The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations.Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD?SAM relationship.Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend.The explained variance is about 40%in the AMIP runs.These results suggest improved simulation of the SOD?SAM relationship may help reproduce long-term changes in the SAM.  相似文献   

13.
The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.  相似文献   

14.
The change in ocean net surface heat flux plays an important role in the climate system. It is closely related to the ocean heat content change and ocean heat transport, particularly over the North Atlantic, where the ocean loses heat to the atmosphere, affecting the AMOC (Atlantic Meridional Overturning Circulation) variability and hence the global climate. However, the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations. In order to explain the discrepancy of the surface heat flux over the North Atlantic, datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC (Diagnosing Earth's Energy Pathways in the Climate system) product. As an indirect check of the ocean surface heat flux, the oceanic heat transport inferred from the combination of the ocean surface heat flux, sea ice, and ocean heat content tendency is compared with the RAPID (Rapid Climate Change-Meridional Overturning Circulation and Heat flux array) observations at 26°N in the Atlantic. The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere. The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about 10 W m–2 less than DEEPC, and the heat transport is about 0.30 PW (1 PW = 1015 W) lower than RAPID and DEEPC. The model horizontal resolution effect on the discrepancy is also investigated. Results show that by increasing the resolution, both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.  相似文献   

15.
This study evaluates the ability of four versions BCC (Beijing Climate Center or National Climate Center) models (BCC_AGCM2.1, BCC_AGCM2.2, BCC_CSM1.1 and BCC_CSM1.1m) in simulating the MJO phenomenon using the outputs of the AMIP (Atmospheric Model Intercomparison Project) and historical runs. In general, the models can simulate some major characteristics of the MJO, such as the intensity, the periodicity, the propagation, and the temporal/spatial evolution of the MJO signals in the tropics. There are still some biases between the models and the observation/reanalysis data, such as the overestimated total intraseasonal variability, but underestimated MJO intensity, shorter significant periodicity, and excessive westward propagation. The differences in the ability of simulating the MJO between AMIP and historical experiments are also significant. Compared to the AMIP runs, the total intraseasonal variability is reduced and more realistic, however the ratio between the MJO and its westward counterpart decreases in the historical runs. This unrealistic simulation of the zonal propagation might have been associated with the greater mean precipitation over the Pacific and corresponded to the exaggeration of the South Pacific Convergence Zone structure in precipitation mean state. In contrast to the T42 versions, the improvement of model resolution demonstrate more elaborate topography, but the enhanced westward propagation signals over the Arabia Sea followed. The underestimated (overestimated) MJO variability over eastern Indian Ocean (Pacific) was assumed to be associated with the mean state. Three sets of sensitive experiments using BCC_CSM1.1m turn out to support this argument.  相似文献   

16.
Chao He  Tianjun Zhou 《Climate Dynamics》2014,43(9-10):2455-2469
Using the output of the Atmospheric Model Intercomparison Project (AMIP) experiments of 28 models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), the models’ performances in the simulation of the two dominant interannual variability modes of the Western North Pacific Subtropical High (WNPSH) are investigated. In the observation, the positive phases of these two modes feature an anomalous anticyclone over the western North Pacific (WNP), but the first mode (M1) is closely connected with the sea surface temperature (SST) anomalies over the tropical Indian Ocean (TIO), the maritime continent (MC) and the equatorial central Pacific (CP), while the second mode (M2) is closely connected with the SST anomalies over the WNP. The M1 is well captured by the CMIP5–AMIP models forced by the historical SST, suggesting the M1 is an SST-forced mode. The CMIP5–AMIP models capture the close relationship of the M1 with the SST anomalies over the TIO, the MC and the CP. The forcing mechanisms of M1 in the CMIP5–AMIP models are consistent with the observation, including a Kelvin wave emanating from the TIO and a local Hadley circulation originating from the MC. Different from the high reproducibility of the M1, the M2 is only moderately reproduced by the multi-model ensemble (MME) mean of the CMIP5–AMIP models. The simulated anomalous WNPSH of the M2 is weaker and shifts southwestward in the MME and many individual models compared to the observation. Among the five anomalous WNPSH years associated with the M2, the MME captures the anomalous WNPSH only in 1993 and 1994 but not in 1980, 1981 and 1987. The partial reproducibility of the M2 by the CMIP5–AMIP models suggests the M2 is neither a pure atmospheric internal mode nor a pure SST-forced mode. The observed close relationship between the anomalous WNPSH and the WNP SST anomalies is underestimated by the CMIP5–AMIP models, suggesting the local SST–WNPSH relationship may depend on the air–sea interaction over the WNP.  相似文献   

17.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

18.
Conflicting results have been presented regarding the link between Arctic sea-ice loss and midlatitude cooling, particularly over Eurasia. This study analyzes uncoupled(atmosphere-only) and coupled(ocean–atmosphere) simulations by the Climate Forecast System, version 2(CFSv2), to examine this linkage during the Northern Hemisphere winter, focusing on the simulation of the observed surface cooling trend over Eurasia during the last three decades. The uncoupled simulations are Atmospheric Model Intercomparison Project(AMIP) runs forced with mean seasonal cycles of sea surface temperature(SST)and sea ice, using combinations of SST and sea ice from different time periods to assess the role that each plays individually,and to assess the role of atmospheric internal variability. Coupled runs are used to further investigate the role of internal variability via the analysis of initialized predictions and the evolution of the forecast with lead time.The AMIP simulations show a mean warming response over Eurasia due to SST changes, but little response to changes in sea ice. Individual runs simulate cooler periods over Eurasia, and this is shown to be concurrent with a stronger Siberian high and warming over Greenland. No substantial differences in the variability of Eurasian surface temperatures are found between the different model configurations. In the coupled runs, the region of significant warming over Eurasia is small at short leads, but increases at longer leads. It is concluded that, although the models have some capability in highlighting the temperature variability over Eurasia, the observed cooling may still be a consequence of internal variability.  相似文献   

19.
评估了耦合气候系统模式FGOALS海洋同化试验对西北太平洋夏季降水和SST相关关系的模拟技巧,并对比了相应的观测海温强迫试验(AMIP)和历史气候模拟试验结果。结果显示,FGOALS海洋同化试验对亚洲季风区大部分海域夏季SST年际变化有较高的模拟技巧,但其对菲律宾以东海域模拟技巧较低。在西北太平洋夏季降水-SST相关关系方面,同化试验部分地再现了南海和菲律宾以东海域降水超前SST变化1个月和同时二者的负相关关系,优于AMIP试验但逊于自由耦合模拟试验。同化试验对SST倾向-降水相关关系的模拟技巧亦介于AMIP试验和自由耦合试验之间。观测中,西北太平洋夏季降水与环流异常受日界线附近和赤道东印度洋海洋大陆地区海温异常的遥强迫,并通过改变到达海表的净短波辐射通量影响局地SST异常,导致局地海温-降水和局地海温倾向-降水的负相关关系。在AMIP试验中,遥强迫导致的西北太平洋地区环流异常较之观测偏弱,由于缺少局地海气耦合过程,在西北太平洋多数地区表现为海温对大气的强迫作用,即SST-降水正相关关系。FGOALS同化试验和自由耦合试验考虑了局地海气耦合过程,虽然低估了遥强迫对西北太平洋地区夏季环流异常的影响,依然部分模拟出局地降水-SST负相关关系但较之观测偏弱。同时,自由耦合试验高估了西北太平洋20°N以南地区海温异常对大气环流异常的强迫,使得其对中国南海和日本岛以南海域SST-降水负相关关系的模拟稍优于同化试验。  相似文献   

20.
1.IntroductionNumericalmodelsforweatherpredictionarebecomingmorereliableandpopularinmeteorologyandclimateresearch.Multi-laye...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号