首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The NCEP–NCAR reanalysis dataset and the Had ISST dataset(1959–2014) are used to analyze the impact of two types of El Nio events, i.e., eastern Pacific El Nio(EP-El Nio) and central Pacific El Nio(CP-El Nio) events, on the duration of major and minor sudden stratospheric warmings(SSWs) in Northern Hemisphere winter(November to February). Although the frequency of major and minor SSWs during different types of El Nio shows no distinct differences, the duration of both major and minor SSWs during CP-El Nio is shorter than that during EP-El Nio. The spatial distribution of geopotential height anomalies preceding major SSWs resembles the western Pacific(WP) teleconnection pattern, while the spatial distribution of geopotential height anomalies preceding minor SSWs bears similarity to the Pacific–North America(PNA)teleconnection pattern. An enhancement of the strength of both wavenumber 1 and wavenumber 2 is found before major SSWs. Before minor SSWs, wavenumber 1 is also strengthened, but wavenumber 2 is weakened. The analysis also reveals that EP-El Nio tends to induce positive phases of PNA and WP teleconnections, while CP-El Nio induces negative-phase WP teleconnection. As the positive phases of the PNA and WP teleconnections are related to the strengthening of wavenumber 1, EP-El Nio causes an enhancement of wavenumber 1 in the high-latitude upper troposphere and an enhancement of the upward wave flux in the high-latitude stratosphere, accompanied by a negative anomaly in Eliassen–Palm flux divergence in the subpolar stratosphere, which accounts for the longer SSW duration during EP-El Nio than during CP-El Nio.  相似文献   

2.
The ENSO’s Effect on Eastern China Rainfall in the Following Early Summer   总被引:6,自引:0,他引:6  
ENSO’s effect on the rainfall in eastern China in the following early summer is investigated by using station precipitation data and the ERA-40 reanalysis data from 1958 to 2002. In June, after the El Nino peak, the precipitation is significantly enhanced in the Yangtze River valley while suppressed in the Huaihe River-Yellow River valleys. This relationship between ENSO and the rainfall in eastern China is established possibly through two teleconnections: One is related to the western North Pacific (WNP) ...  相似文献   

3.
POSSIBLE RELATIONSHIP BETWEEN ENSO AND BLOCKING IN KEY REGIONS OF EURASIA   总被引:2,自引:0,他引:2  
Using reanalysis data provided by the U.S.National Centers for Environmental Prediction/National Center for Atmospheric Research,the potential relationship between the El Ni?o-Southern Oscillation (ENSO) cycle and blocking highs in three key regions of Eurasia (Ural,Baikal,and Okhotsk) from 1950 to 2008 is analyzed.Composite analysis of 500 hPa geopotential height field during different stages of ENSO reveals that in the winters of El Ni?o (EN) years,there is significant negative anomaly of geopotential height in the three key regions.In the winters of La Ni?a (LN) years,on the other hand,significant positive anomaly of geopotential height is observed in Eastern Ural,Baikal,and Okhotsk.In summer,Okhotsk exhibits positive anomaly,which is significant at a confidence level of 90% by Student’s t-test during the developing stage of an LN year.In the developing stage of an EN year,geopotential height field at 500 hPa manifests positive (negative) anomaly in Baikal (Ural and Okhotsk),while the geopotential height field at 500 hPa exhibits positive (negative) anomaly in Ural and Okhotsk (Baikal) during the decaying stage of both EN and LN years.However,these abnormities are insignificant in a developing EN year,decaying EN year,and the summer of a decaying LN year.By analyzing 500 hPa geopotential height field during different phases of the ENSO cycle,it is observed that results of the case study are consistent with those of composite analysis.Annual average blocking is likewise examined during the different stages of ENSO from 1950 to 2008.Combined with composite analysis and case study,results indicate that blockings in the three key regions are suppressed (enhanced) during the winters of EN (LN) years.In summer,the influence of ENSO on the blockings in the three key regions is not as significant as that in winter.Evidently,developing LN may enhance blockings in Okhotsk.Influence factors on blockings are various and complex.This paper indicates that the influence of ENSO on blockings cannot be neglected,and that it is crucial to related operational forecasting as a potential signal.  相似文献   

4.
It is widely recognized that rainfall over the Yangtze River valley(YRV) strengthens considerably during the decaying summer of El Ni ?no,as demonstrated by the catastrophic flooding suffered in the summer of 1998.Nevertheless,the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998,despite the intensity of the 2016 El Nio having been as strong as that in 1998.A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years,principally in August.The precipitation anomaly was negative in August 2016—different to the positive anomaly of 1998.Further analysis suggests that the weaker YRV rainfall in August 2016 could be attributable to the distinct circulation anomalies over the midlatitudes.The intensified "Silk Road Pattern" and upper-tropospheric geopotential height over the Urals region,both at their strongest since 1980,resulted in an anticyclonic circulation anomaly over midlatitude East Asia with anomalous easterly flow over the middle-to-lower reaches of the YRV in the lower troposphere.This easterly flow reduced the climatological wind,weakened the water vapor transport,and induced the weaker YRV rainfall in August 2016,as compared to that in 1998.Given the unique sub-seasonal variation of the YRV rainfall in summer 2016,more attention should be paid to midlatitude circulation—besides the signal in the tropics—to further our understanding of the predictability and variation of YRV summer rainfall.  相似文献   

5.
Bin WANG  Juan LI  Qiong HE 《大气科学进展》2017,34(10):1235-1248
Severe flooding occurred in southern and northern China during the summer of 2016 when the 2015 super El Nio decayed to a normal condition. However, the mean precipitation during summer(June–July-August) 2016 does not show significant anomalies, suggesting that — over East Asia(EA) — seasonal mean anomalies have limited value in representing hydrological hazards. Scrutinizing season-evolving precipitation anomalies associated with 16 El Nio episodes during 1957–2016 reveals that, over EA, the spatiotemporal patterns among the four categories of El Nio events are quite variable, due to a large range of variability in the intensity and evolution of El Nio events and remarkable subseasonal migration of the rainfall anomalies. The only robust seasonal signal is the dry anomalies over central North China during the El Nio developing summer. Distinguishing strong and weak El Nio impacts is important. Only strong El Nio events can persistently enhance EA subtropical frontal precipitation from the peak season of El Nio to the ensuing summer, by stimulating intense interaction between the anomalous western Pacific anticyclone(WPAC) and underlying dipolar sea surface temperature anomalies in the Indo-Pacific warm pool, thereby maintaining the WPAC and leading to a prolonged El Nio impact on EA. A weak El Nio may also enhance the post-El Nio summer rainfall over EA, but through a different physical process: the WPAC re-emerges as a forced response to the rapid cooling in the eastern Pacific. The results suggest that the skillful prediction of rainfall over continental EA requires the accurate prediction of not only the strength and evolution of El Nio, but also the subseasonal migration of EA rainfall anomalies.  相似文献   

6.
The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the interdecadal variation of the horizontal winds,relative vorticity,and eddy geopotential height over the western Pacific are all analyzed.The weakened anticyclone and decreased negative relative vorticity at middle-low levels over the western Pacific suggest that the WPSH weakened during 1979–2009 relative to1948–78.After subtracting the zonal belt mean height between 0°and 40°N,the 500 hP a eddy geopotential height with significant negative anomalies over the western Pacific can correctly depict this weakened interdecadal variation of the WPSH.The illusory westward extension signal reflected by the 500 h Pa geopotential height may derive from the significant increment of the geopotential height at middle and lower latitudes in the late 1970s under global warming.  相似文献   

7.
The interannual variations of summer surface air temperature over Northeast China (NEC) were investigated through a month-to-month analysis from May to August. The results suggested that the warmer temperature over NEC is related to a local positive 500-hPa geopotential height anomaly for all four months. However, the teleconnection patterns of atmospheric circulation anomalies associated with the monthly surface air temperature over NEC behave as a distinguished subseasonal variation, although the local positive height anomaly is common from month to month. In May and June, the teleconnection pattern is characterized by a wave train in the upper and middle troposphere from the Indian Peninsula to NEC. This wave train is stronger in June than in May, possibly due to the positive feedback between the wave train and the South Asian rainfall anomaly in June, when the South Asian summer monsoon has been established. In July and August, however, the teleconnection pattern associated with the NEC temperature anomalies is characterized by an East Asia/Pacific (EAP) or Pacific/Japan (PJ) pattern, with the existence of precipitation anomalies over the Philippine Sea and the South China Sea. This pattern is much clearer in July corresponding to the stronger convection over the Philippine Sea compared to that in August.  相似文献   

8.
The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For El Nio developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipitation anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during El Nio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simulate the asymmetry of the wintertime circulation anomalies over the WNP between El Nio and La Nia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nia is generally symmetric about the WNPAC associated with El Nio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nin a events decay much faster than observed. In the observation, the WNPAC maintains throughout the El Nio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basinwide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.  相似文献   

9.
In the paper the 5°×10°latitude-longitude grid point data of daily 500 hPa geopotential height over the NorthernHemisphere(NH)in summer(June—August)during 1980s are used.The base point(20°N,120°E)is selected to calcu-late point correlation between the base point and other grid points.We find that the summer heat source anomaly of thetropical western Pacific causes anomaly of summer general circulation over NH and teleconnection of general circula-tion similar to PNA pattern forms from East Asia to North America.The teleconnections show great interannualchanges.  相似文献   

10.
The western North Pacific anomalous anticyclone(WNPAC) is an important atmospheric circulation system that conveys El Ni?o impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Ni?o mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Ni?o decaying summer.The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Ni?o decaying/La Ni?a developing or La Ni?a persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.  相似文献   

11.
In recent decades, the typical El Nio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of El Nio with the warmest SSTs in the central Pacific, which is flanked on the east and west by cooler SSTs, has become more fre-quent. The more recent type of El Nio was referred to as central Pacific El Nio, warm pool El Nio, or dateline El Nio, or the El Nio Modoki. Central Pacific El Nio links to a different tropical-to-extratropical teleconnection and exerts different impacts on climate, and several classification approaches have been proposed. In this study, a new classification approach is proposed, which is based on the linear combination (sum or difference) of the two leading Empirical Orthogonal Functions (EOFs) of tropical Pacific Ocean sea surface temperature anomaly (SSTA), and the typical El Ni o index (TENI) and the central El Nio index (CENI) are able to be derived by projecting the observed SSTA onto these combinations. This classification not only reflects the characteristics of non-orthogonality between the two types of events but also yields one period peaking at approximate two to seven years. In particular, this classification can distin-guish the different impacts of the two types of events on rainfall in the following summer in East China. The typical El Nio events tend to induce intensified rainfall in the Yangtze River valley, whereas the central Pacific El Nio tends to induce intensified rainfall in the Huaihe River valley. Thus, the present approach may be appropriate for studying the impact of different types of El Nio on the East Asian climate.  相似文献   

12.
正In recent decades, the typical El Nio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of El Nio with the warmest SSTs in the central Pacific, which is flanked on the east and west by cooler SSTs, has become more fre-quent. The more recent type of El Nio was referred to as central Pacific El Nio, warm pool El Nio, or dateline El Nio, or the El Nio Modoki. Central Pacific El Nio links to a different tropical-to-extratropical teleconnection and exerts different impacts on climate, and several classification approaches have been proposed. In this study, a new classification approach is proposed, which is based on the linear combination (sum or difference) of the two leading Empirical Orthogonal Functions (EOFs) of tropical Pacific Ocean sea surface temperature anomaly (SSTA), and the typical El Ni o index (TENI) and the central El Nio index (CENI) are able to be derived by projecting the observed SSTA onto these combinations. This classification not only reflects the characteristics of non-orthogonality between the two types of events but also yields one period peaking at approximate two to seven years. In particular, this classification can distin-guish the different impacts of the two types of events on rainfall in the following summer in East China. The typical El Nio events tend to induce intensified rainfall in the Yangtze River valley, whereas the central Pacific El Nio tends to induce intensified rainfall in the Huaihe River valley. Thus, the present approach may be appropriate for studying the impact of different types of El Nio on the East Asian climate.  相似文献   

13.
This paper compares data from linearized and nonlinear Zebiak–Cane model, as constrained by observed sea surface temperature anomaly(SSTA), in simulating central Pacific(CP) and eastern Pacific(EP) El Nio. The difference between the temperature advections(determined by subtracting those of the linearized model from those of the nonlinear model),referred to here as the nonlinearly induced temperature advection change(NTA), is analyzed. The results demonstrate that the NTA records warming in the central equatorial Pacific during CP El Nio and makes fewer contributions to the structural distinctions of the CP El Nio, whereas it records warming in the eastern equatorial Pacific during EP El Nio, and thus significantly promotes EP El Nio during El Nio–type selection. The NTA for CP and EP El Nio varies in its amplitude,and is smaller in CP El Nio than it is in EP El Nio. These results demonstrate that CP El Nio are weakly modulated by small intensities of NTA, and may be controlled by weak nonlinearity; whereas, EP El Nio are significantly enhanced by large amplitudes of NTA, and are therefore likely to be modulated by relatively strong nonlinearity. These data could explain why CP El Nio are weaker than EP El Nio. Because the NTA for CP and EP El Nio differs in spatial structures and intensities, as well as their roles within different El Nio modes, the diversity of El Nio may be closely related to changes in the nonlinear characteristics of the tropical Pacific.  相似文献   

14.
Based on the monthly mean OLR, geopotential height and wind data from the NCEP/NCAR reanalyzed data sets for 1982-1996, the atmospheric teleconnection associated with the warm pool of the tropical western Pacific and Asian monsoon region during E1 Nino and non-El Niño years are studied diagnostically in this paper. It is found that, the teleconnection pattern caused by the activity of the Asian summer monsoon (ASM) emanates from the Asian monsoon region to the tropical eastern Pacific via the Aleutians in summer of the El Niño years. In the non-El Niño years, however, the ASM-related teleconnection pattern stretches northward and westward from the Asian monsoon region, exerting its influences mainly on the circulation over middle and high latitude rather than that over the tropical eastern Pacific. Evidences also show that the anomalous convection over the tropical western Pacific warm pool leads to the East Asia/Pacific(EAP) teleconnection pattern during the non-El Niño years. It is interesting to note that the teleconnection in the 500 height field associated with the warm pool convection disappears in the El Niño years. The differences of the teleconnection pattern between the El Niño years and the non-El Niño years suggest that the activities of the ASM and the convection over the warm pool of the tropical western Pacific, the most energetic weather events in boreal summer, are intertwined and interactive with other global-scale circulation in different ways under different climate backgrounds.  相似文献   

15.
In 2018, China experienced the hottest summer since 1961. The maximum, mean, and minimum temperatures all reached the highest. Air temperatures in most regions were much higher than normal; in northern China especially,the temperature anomalies were above double of the standard deviations. Consistent variations of temperature anomalies appeared in the national mean and in northern China on different timescales from intraseasonal to annual, indicating that the above normal temperature in northern China contributed significantly to the record-breaking hot summer of entire China. Relationships among the high temperature in summer 2018, the tropospheric circulation, and the global sea surface temperatures(SSTs) are further analyzed. It is found that the intensified and more northward western Pacific subtropical high(WPSH), weakened Northeast China cold vortex(NECV), and positive geopotential height anomaly from northern China to the Sea of Japan resulted in the abnormally high temperature in summer 2018. From late July to mid August, the WPSH was stronger than normal, with its ridge line jumping to north of 40°N; meanwhile, the NECV was much weaker and more northward than normal; both of the two systems led to the persistent high temperature in northern China during this period. In addition, the SSTs in Kuroshio and its extension area(K–KE) in summer 2018 were also the highest since 1961 and the greatest positive SST anomaly in K–KE was favorable for the above normal geopotential height over North China–Northeast China–Japan at 500 hPa, giving rise to the exceptionally high temperature in northern China.  相似文献   

16.
The study examined effects of sea surface temperature anomalies (SSTAs) off the east coast of Japan on the blocking high over the Okhotsk Sea in June by diagnostic analysis and numerical simulation. Firstly, based on 500-hPa geopotential height fields, the Okhotsk high index (OKHI) for June from 1951 to 2000 is calculated and analyzed. The result indicates that the OKHI has obvious inter-annual and inter-decadal variations, and there are 9 yr of high OKHI and 8 yr of low OKHI in 50 yr. Secondly, by using the OKHI, the relationship between the Okhotsk high and the 500-hPa geopotential height anomaly is investigated. The results indicate that the "+-+" pattern of geopotential height anomaly crossing Eurasia in the mid-high latitudes and the "+-" pattern of geopotential height anomaly from high to low latitudes over East Asia are in favor of the formation and maintenance of the Okhotsk high. The relationship between the OKHI and the SSTA over the North Pacific is investigated in early summer by using correlation and composite analysis. We found that when the blocking circulation over the Okhotsk Sea occurs, there is an obvious negative SSTA off the east coast of Japan in early summer. We simulated the effects of the negative SSTA of east coast of Japan on the atmospheric circulation anomaly over East Asia through the control and sensitivity experiments using NCAR CAM3 model in order to confirm our analysis results. The simulation shows that the negative SSTA off the east coast of Japan results in the significant positive 40 gpm 500-hPa geopotential height anomaly over the Okhotsk Sea and the negative anomalies off the east coast of Japan which might contribute to the formation and development of the Okhotsk high in June.  相似文献   

17.
In summer 2018, a total of 18 tropical cyclones(TCs) formed in the western North Pacific(WNP) and South China Sea(SCS), among which 8 TCs landed in China, ranking respectively the second and the first highest since 1951.Most of these TCs travelled northwest to northward, bringing in heavy rainfall and strong winds in eastern China and Japan. The present study investigates the impacts of decaying La Ni?a and intraseasonal oscillation(ISO) on the extremely active TCs over the WNP and SCS in summer 2018 by use of correlation and composite analyses. It is found that the La Ni?a episode from October 2017 to March 2018 led to above-normal sea surface temperature(SST) over central–western Pacific, lower sea level pressure and 500-hPa geopotential height over WNP, and abnormally strong convective activities over the western Pacific in summer 2018. These preceding oceanic thermal conditions and their effects on circulation anomalies are favorable to TC genesis in summer. Detailed examination reveals that the monsoon trough was located further north and east, inducing more TCs in northern and eastern WNP; and the more eastward WNP subtropical high as well as the significant wave train with a "-+-+" height anomaly pattern over the midlatitude Eurasia–North Pacific region facilitated the northwest to northward TC tracks. Further analyses reveal that two successively active periods of Madden–Julian Oscillation(MJO) occurred in summer 2018 and the boreal summer intraseasonal oscillation(BSISO) was also active over WNP, propagating northward significantly, corresponding to the more northward TC tracks. The MJO was stagnant over the Maritime Continent to western Pacific,leading to notably enhanced convection in the lower troposphere and divergence in the upper troposphere, conducive to TC occurrences. In a word, the extremely active TC activities over the WNP and SCS in summer 2018 are closely linked with the decaying La Ni?a, and the MJO and BSISO; their joint effects result in increased TC occurrences and the TC tracks being shifted more northwest to northward than normal.  相似文献   

18.
The impact of surface sensible heating over the Tibetan Plateau(SHTP) on the western Pacific subtropical high(WPSH)with and without air–sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually followed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an enhanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly(SSTA) in the equatorial central Pacific via surface warm advection.Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the atmospheric dipole anomalies over the western Pacific. Therefore, the air–sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land–air–sea interaction framework.  相似文献   

19.
El Nio events in the central equatorial Pacific (CP) are gaining increased attention,due to their increasing intensity within the global warming context.Various physical processes have been identified in the climate system that can be responsible for the modulation of El Nio,especially the effects of interannual salinity variability.In this work,a comprehensive data analysis is performed to illustrate the effects of interannual salinity variability using surface and subsurface salinity fields from the Met Office ENSEMBLES (EN3) quality controlled ocean dataset.It is demonstrated that during the developing phase of an El Nio event,a negative sea surface salinity (SSS) anomaly in the western-central basin acts to freshen the mixed layer (ML),decrease oceanic density in the upper ocean,and stabilize the upper layers.These related oceanic processes tend to reduce the vertical mixing and entrainment of subsurface water at the base of the ML,which further enhances the warm sea surface temperature (SST) anomalies associated with the El Nio event.However,the effects of interannually variable salinity are much more significant during the CP-El Nio than during the eastern Pacific (EP) El Nio,indicating that the salinity effect might be an important contributor to the development of CP-El Nio events.  相似文献   

20.
Observational and reanalysis data are used to investigate the different relationships between boreal spring sea surface temperature (SST) in the Indian and Pacific oceans and summer precipitation in China. Partial correlation analysis reveals that the effects of spring Indian Ocean SST (IO SST) and Pacific SST (PSST) anomalies on summer precipitation in China are qualitatively opposite. When IO SST anomalies are considered independently of PSST anomalies, precipitation decreases south of the Yangtze River, in most areas of Inner Mongolia, and in some parts of Liaoning Province, and increases in the Yangtze River valley, parts of southwestern and northern China, northeastern Inner Mongolia, and Heilongjiang Province. This results in a negative-positive-negative-positive pattern of precipitation anomalies in China from south to north. When PSST anomalies (particularly those in the Nin o3.4 region) are considered independently of IO SST anomalies, the pattern of precipitation anomalies in China is positive-negative-positive-negative from south to north. The genesis of summer precipitation anomalies in China is also examined when El Nin o-Southern Oscillation (ENSO) signals are removed from the ocean and atmosphere. An anticyclonic low-level wind anomaly forms in the South China Sea-Northwest Pacific area when the IO SST anomaly (SSTA) is warm and the Northwest Pacific SSTA is cold. This anticyclonic anomaly substantially influences summer precipitation in China. Anomalous warming of tropical IO SST induces positive geopotential height anomalies in the subtropics and an east-west dipole pattern in midlatitudes over Asia. These anomalies also affect summer precipitation in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号