首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
 In this study, previous evaluations of the monthly mean structure of the tropical lower stratosphere in reanalyzed datasets are extended to include the period 1958–1978, when no satellite-based observations were available. It is shown that a large discontinuity, in temperatures near the tropical tropopause, in the NCEP data occurred when the Tiros Operational Vertical Sounder (TOVS) became operational. When only rawinsonde data were available, the tropopause temperatures in the NCEP dataset are in better agreement with ERA data for TOVS period. Both NCEP and NASA reanalyses show similar deviations from the ERA data in the TOVS renalyses show similar deviations from the ERA data in the TOVS period. There is also a stepwise change in the lower stratospheric meridional velocity when the TOVS data were introduced into the NCEP reanalyses. This discontinuity is such that in the 1958–1978 period, the annual cycle in zonal mean meridional velocity in the NCEP data resembles that of the ERA data in the 1979–1993 period. The differences are shown to result from large changes in the local meridional flow in the Indonesian region. The temporal consistency of the QBO is examined; it is shown that the NCEP assimilation system is sensitive to the data available. There is a change in the zonally asymmetric structure of the zonal wind over time, presumably related to the changes in input data and the inability of the model to represent the three-dimensional structure of the tropical lower stratosphere. These results provide further evidence of the value of rawinsonde data in data assimilation systems as well as the need to use satellite radiance data in an appropriate manner. Received: 7 April 1997 / Accepted: 4 September 1998  相似文献   

2.
The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30?hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30?hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.  相似文献   

3.
 An intercomparison of the thermal structure and the annual cycle in the tropical lower stratosphere of two reanalysis datasets is presented. These are from the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) and the European Centre for Medium Range Weather Forecasts (ECMWF Re-Analysis: ERA). Generally, the ERA data are coldest and in better agreement with radiosonde observations; this is particularly apparent at 100 hPa where there is also a strong geographic bias, the maximum differences (more than 4 K) occurring over the southern Pacific and the Indian Ocean, with much smaller (sometimes reversed) differences over land. The NCEP temperatures are biased towards satellite-derived values, while the ERA data resolve the low tropopause temperatures much better. The lower ERA temperatures have important implications for the cross-tropopause exchange of water vapor. The meridional-height structure of the annual cycles agree quite well, but the amplitude in the ERA data is about 50% stronger than in NCEP at 70 hPa (in better agreement with previous studies) and weaker at lower pressures. As in previous studies, an anticorrelation is found between the tropical and extratropical temperatures of the reanalyses. The mean meridional flow at the equator is northward all year at all stratospheric levels in the NCEP data, implying a mass transport from the Southern to the Northern Hemisphere; in the ERA data the expected annual cycle (flow from summer to winter) is reproduced with very small annual mean exchange. Received: 17 June 1997/Accepted: 17 December 1997  相似文献   

4.
赤道低平流层纬向风垂直切变与ENSO变率的关系   总被引:1,自引:0,他引:1  
利用NCEP/NCAR 40a再分析资料研究了赤道低平流层纬向风垂直切变与ENSO变率间的关系。结果得出,赤道低平流层纬向风的垂直切变呈现明显的准两年振荡,SOI和Nino3区SSTA的准两年周期成分与赤道低平流层纬向风垂直切变分别呈现反位相和同位相关系。赤道低平流层西(东)风切变位相时,OLR、1000hPa高度,2000hPa高度和温度、850hPa温度等要素的距平分布与其在El Nino(La Nina)时段的分布相似。  相似文献   

5.
王春晓  田文寿 《大气科学》2017,41(2):275-288
利用2005~2014年10年的卫星微波临边探测仪(MLS)资料分析了热带平流层一氧化碳(CO)体积混合比的年际变率,发现热带平流层CO浓度的准两年振荡(QBO)在30 hPa高度附近存在明显的位相变化特征。大气化学气候模式模拟结果表明,热带平流层CO的准两年振荡信号是化学和动力过程共同作用的结果,而动力作用主要是QBO引起的次级经向环流引起的物质传输。化学和动力过程共同作用导致热带平流层CO浓度的垂直梯度在30 hPa高度处发生反转,进而产生一氧化碳QBO信号的位相变化。此外,化学气候模式模拟结果还表明,与CO有关的化学过程不但可以减弱一氧化碳QBO信号的振幅,还可以在热带30~10 hPa高度范围内造成一氧化碳QBO和纬向风QBO信号之间约3个月的时间差。  相似文献   

6.
低平流层准两年变率研究   总被引:6,自引:2,他引:4  
分析NCAR/NCEP40年分析资料得出,赤道低平流层纬向风年际变率的平均周期约28.2个月,最大振幅的20hPa,西(东)风距平平垂直下传平均速度1.21(1.04)km/月。用10hPa和70hPa月平均纬向风标准化距平之差反映整层准两年变率的相位。低平流层两半球中纬气温有与之配合的振荡,西(东)风切变时,中纬气温偏低(高)。赤道纬向风准两年变率引起的经圈环流异常是联系低续续向风与中纬气温准年  相似文献   

7.
分析NCAR/NCEP40年再分析资料得出,赤道低平流层纬向风年际变率的平均周期约28.2个月,最大振幅在20hPa,西(东)风距平垂直下传平均速度1.21(1.04)km/月。用10hPa和70hPa月平均纬向风标准化距平之差可反映整层准两年变率的相位,低平流层两半球中纬气温有与之配合的振荡,西(东)风切变时,中纬气温偏低(高)。赤道纬向风准两年变率引起的经圈环流异常是联系低纬纬向风与中纬气温准两年变率的纽带。  相似文献   

8.
1. Introduction The quasi-biennial oscillation (QBO) of the mean zonal wind in the equatorial stratosphere was discov- ered by Reed et al. (1961) and Veryard and Ebdon (1961). Later, Funk and Garnham (1962) and Ra- manathan (1963) were the first to descri…  相似文献   

9.
利用NCEP/NCAR, NCEP/DOE和ERA40 3套再分析资料的逐日200 hPa纬向风数据,选取1961—1990年、1971—2000年和1981—2010年3种不同气候态,对比分析了3种气候态下热带大气季节内振荡 (ISO) 的基本气候特征及其在不同再分析资料中的异同。研究表明:1981—2010年气候态下,热带大气ISO冬春强、夏秋弱的年循环特征更加明显,东传短波能量增强,起始北传时间偏晚。NCEP/NCAR与NCEP/DOE资料所表征的热带大气ISO在空间分布、强度和能量传播方面的一致性较好。NCEP/NCAR资料反映的热带大气ISO强度在热带印度洋和热带西太平洋地区较ERA40资料偏弱,在赤道东太平洋地区较ERA40资料偏强;ERA40资料反映的热带大气ISO强度在12月—次年3月中旬较NCEP/NCAR资料偏强,而在3月中旬—11月偏弱;ERA40资料反映的热带大气ISO振荡位相较NCEP/NCAR资料超前10 d左右;NCEP/NCAR资料反映的东传谱能量弱于ERA40资料,西传能量强于ERA40资料;7月中旬,NCEP/NCAR资料反映的东亚地区大气ISO经向北传较ERA40资料偏晚。  相似文献   

10.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

11.
The interdecadal variation of the association of the stratospheric quasi-biennial oscillation (QBO) with tropical sea surface temperature (SST) anomalies (SSTA) and with the general circulation in the troposphere and lower stratosphere is examined using the ERA40 and NCEP/NCAR reanalyses, as well as other observation-based analyses. It is found that the relationship between the QBO and tropical SSTA changed once around 1978–1980, and again in 1993–1995. During 1966–1974, negative correlation between the QBO and NINO3.4 indices reached its maximum when the NINO3.4 index lagged the QBO by less than 6?months. Correspondingly, the positive correlations were observed when the NINO3.4 index led the QBO by about 11–13?months or lagged by about 12–18?months. However, maximum negative correlations were shifted from the NINO3.4 index lagging the QBO by about 0–6?months during 1966–1974 to about 3–12?months during 1985–1992. During 1975–1979, both the negative and positive correlations were relatively small and the QBO and ENSO were practically unrelated to each other. The phase-based QBO life cycle composites also confirm that, on average, there are two phase (6–7?months) delay in the evolution of the QBO-associated anomalous Walker circulation, tropical SST, atmospheric stability, and troposphere and lower stratosphere temperature anomalies during 1980–1994 in comparison with those in 1957–1978. The interdecadal variation of the association between the QBO and the troposphere variability may be largely due to the characteristic change of El Ni?o-Southern Oscillation. The irregularity of the QBO may play a secondary role in the interdecadal variation of the association.  相似文献   

12.
Tropical intraseasonal rainfall variability in the CFSR   总被引:2,自引:1,他引:1  
While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925?hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2?days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and Applications (MERRA), is also analyzed. It is shown that both the ERAI and MERRA generate stronger rainfall spectra than the R1 and more realistic dominance of eastward propagating variance than R2. The intraseasonal variability in the MERRA is stronger than that in the ERAI but weaker than that in the CFSR and CMORPH.  相似文献   

13.
两种再分析资料与RS92探空资料的比较分析   总被引:8,自引:1,他引:7  
利用2008年5~12月在安徽寿县获得的逐6小时RS92探空资料,与同期的NCEP/NCAR和ERA-Interim两种再分析资料(6h)进行比较分析,计算分析了标准气压层上探空与再分析资料的温度、纬向风、经向风和相对湿度的相关系数、偏差和平均绝对差。结果表明:在所有标准层高度,ERA-Interim再分析资料与探空资料的相关优于NCEP再分析资料的与探空资料的相关,温度和风速再分析资料与探空资料的相关优于相对湿度的相关;温度再分析资料与探空资料的相关系数在1000~250hPa接近1,在250hPa以上随高度减小,ERA-Interim与探空资料的偏差的绝对值基本小于0.3℃,而NCEP与探空资料的偏差绝对值在1000hPa上要大一倍;纬向风再分析资料与探空资料的相关系数在对流层中高层大于对流层低层和平流层低层,经向风的相关在对流层随高度增加,在平流层低层迅速减小;风速再分析资料与探空资料的偏差绝对值小于1m·s-1;相对湿度再分析资料与探空资料的相关随高度减小,偏差在400~100hPa层较大,达10%~20%,在更高层小于10%。  相似文献   

14.
使用1979~2005年NCEP/NCAR 再分析数据,分析了北半球平流层中低层(300 hPa至10 hPa)纬向风的季节转换规律,并采用二维空间场相似性方法确定了平流层的季节过渡日期。分析表明,平流层大气环流基本为冬夏二元状态,冬夏转换具有突变性;其季节过渡在纬向是接近同步进行的,而在经向则有时间差异,无论是冬夏转换还是夏冬转换高纬都要早于低纬。在平流层中部(10~70 hPa)季节过渡是自上而向下进行的;而在平流层下部(100~200 hPa)季节过渡的上下传递关系则比较复杂,在不同的纬度带有不同的表现。在北半球热带外地区,平流层中部东风期的起止日期与相似性方法计算得到的平流层季节过渡日期之间具有较好的对应关系,在东风期之前和之后往往各存在持续10天左右的零风—弱风期。  相似文献   

15.
热带平流层臭氧准两年周期振荡的特征及数值模拟   总被引:19,自引:1,他引:19  
利用HALOE的观测资料、对热带地区平流层臭氧垂直分布的年际变化及其准两年周期振荡(QBO)进行研究,并同赤道上空平均的纬向风场的准两年周期振荡进行了模拟研究。资料分析结果表明,平流层臭氧浓度高值区的位置在南北方向上和垂直方向上的有明显的准两年周期,臭氧浓度高值中心的南北移动和上下移动又引起局地臭氧总量的周期性变化和准两年周期振荡南北半球不对称。而臭氧浓度中心位置的准两年周期变化与赤道上空平均纬向风的准两年周期振荡密切相关。资料分析还表明,赤道上空平流层中臭氧浓度QBO的位相随高度变化多次。模拟试验表明,纬向风QBO引起垂直经圈环流的变化,在平流层有三对余差环流圈。它们对O3在不同纬度和高度的输送是引起O3准两年周期振荡的重要动力原因。其中,余差环流在平流层中层(25-35km)的环流圈起着重要的作用。  相似文献   

16.
利用1981—2020年中国热带气旋最佳路径数据集、中国大气再分析资料(CMA-RA)、欧洲中期天气预报中心ERA5及美国NCEP/NCAR再分析资料(NCEP-Ⅰ),对比不同资料在表征影响南海热带气旋活动环流背景的能力,探讨CMA-RA的适用性。结果表明:不同资料基本刻画出与热带气旋活动密切相关的环流特征,包括南方涛动、菲律宾至南海低层纬向风、热带低层纬向风反向分布型、菲律宾至南海中东部低层涡度、热带西太平洋垂直风切变及南海至菲律宾以东海域中层湿度。它们对南方涛动、关键区纬向风和中层湿度的刻画较相似,CMA-RA和ERA5对南方涛动、低层纬向风及其与热带气旋关系的描述一致性高,较NCEP-Ⅰ密切,但低层经向风、关键物理量差异较大。对极端年环流具有相似的表现能力,但异常程度存在差异,海平面气压、低层纬向风高度一致,以CMA-RA与ERA5最接近;中层湿度CMA-RA与ERA5接近,较NCEP-Ⅰ偏小;关键物理量差异较大。CMA-RA对南海热带气旋环流的刻画具有与ERA5和NCEP-Ⅰ相当的性能,并与ERA5一致性较高,可为相关工作提供可替换的再分析资料集。  相似文献   

17.
Wavelet analysis is applied to zonal mean zonal wind and temperature fields to represent characteristics of temporal periodic features different from the annual and semi-annual recurrence in the troposphere and stratosphere. A daily database of reanalyses is used for the period 1979–2008, which comprises the era of satellite-based data, as some discontinuities have been observed around 1978 in previous studies. Levels for this study have been chosen at 400 and 10 hPa, respectively in the middle troposphere and middle stratosphere. As representative for diverse latitudinal regions we have respectively selected 0°, ±20°, ±40°, ±60°, ±80°. Significant features were only found at the equator. The period of the quasi-biennial oscillation (QBO) is found to exhibit a decreasing trend in time over the 30 years studied. Potential harmonics of the QBO are found in the tropical stratosphere but also troposphere. However, they do not exhibit the same tendency. This fact supports in particular the idea that the QBO and the tropospheric biennial oscillation may be unrelated phenomena. Some of the observed features lie within the known range of variability of the El Niño Southern Oscillation. Faint effects of the 11-year solar cycle variability may have been observed in the troposphere and stratosphere, but no firm assertion may be made due to the low number of observed cycles for this kind of phenomenon in the used data-set time span. Short-term solar variabilities leave no relevant imprint.  相似文献   

18.
 The predictability of atmospheric responses to global sea surface temperature (SST) anomalies is evaluated using ensemble simulations of two general circulation models (GCMs): the GENESIS version 1.5 (GEN) and the ECMWF cycle 36 (ECM). The integrations incorporate observed SST variations but start from different initial land and atmospheric states. Five GEN 1980–1992 and six ECM 1980–1988 realizations are compared with observations to distinguish predictable SST forced climate signals from internal variability. To facilitate the study, correlation analysis and significance evaluation techniques are developed on the basis of time series permutations. It is found that the annual mean global area with realistic signals is variable dependent and ranges from 3 to 20% in GEN and 6 to 28% in ECM. More than 95% of these signal areas occur between 35 °S–35 °N. Due to the existence of model biases, robust responses, which are independent of initial condition, are identified over broader areas. Both GCMs demonstrate that the sensitivity to initial conditions decreases and the predictability of SST forced responses increases, in order, from 850 hPa zonal wind, outgoing longwave radiation, 200 hPa zonal wind, sea-level pressure to 500 hPa height. The predictable signals are concentrated in the tropical and subtropical Pacific Ocean and are identified with typical El Ni?o/ Southern Oscillation phenomena that occur in response to SST and diabatic heating anomalies over the equatorial central Pacific. ECM is less sensitive to initial conditions and better predicts SST forced climate changes. This results from (1) a more realistic basic climatology, especially of the upper-level wind circulation, that produces more realistic interactions between the mean flow, stationary waves and tropical forcing; (2) a more vigorous hydrologic cycle that amplifies the tropical forcing signals, which can exceed internal variability and be more efficiently transported from the forcing region. Differences between the models and observations are identified. For GEN during El Ni?o, the convection does not carry energy to a sufficiently high altitude, while the spread of the tropospheric warming along the equator is slower and the anomaly magnitude smaller than observed. This impacts model ability to simulate realistic responses over Eurasia and the Indian Ocean. Similar biases exist in the ECM responses. In addition, the relationships between upper and lower tropospheric wind responses to SST forcing are not well reproduced by either model. The identification of these model biases leads to the conclusion that improvements in convective heat and momentum transport parametrizations and basic climate simulations could substantially increase predictive skill. Received: 25 April 1996 / Accepted: 9 December 1996  相似文献   

19.
Assessing levels of uncertainty in recent temperature time series   总被引:2,自引:0,他引:2  
 We examine to what degree we can expect to obtain accurate temperature trends for the last two decades near the surface and in the lower troposphere. We compare temperatures obtained from surface observations and radiosondes as well as satellite-based measurements from the Microwave Soundings Units (MSU), which have been adjusted for orbital decay and non-linear instrument-body effects, and reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centre for Environmental Prediction (NCEP). In regions with abundant conventional data coverage, where the MSU has no major influence on the reanalysis, temperature anomalies obtained from microwave sounders, radiosondes and from both reanalyses agree reasonably. Where coverage is insufficient, in particular over the tropical oceans, large differences are found between the MSU and either reanalysis. These differences apparently relate to changes in the satellite data availability and to differing satellite retrieval methodologies, to which both reanalyses are quite sensitive over the oceans. For NCEP, this results from the use of raw radiances directly incorporated into the analysis, which make the reanalysis sensitive to changes in the underlying algorithms, e.g. those introduced in August 1992. For ERA, the bias-correction of the one-dimensional variational analysis may introduce an error when the satellite relative to which the correction is calculated is biased itself or when radiances change on a time scale longer than a couple of months, e.g. due to orbit decay. ERA inhomogeneities are apparent in April 1985, October/November 1986 and April 1989. These dates can be identified with the replacements of satellites. It is possible that a negative bias in the sea surface temperatures (SSTs) used in the reanalyses may have been introduced over the period of the satellite record. This could have resulted from a decrease in the number of ship measurements, a concomitant increase in the importance of satellite-derived SSTs, and a likely cold bias in the latter. Alternately, a warm bias in SSTs could have been caused by an increase in the percentage of buoy measurements (relative to deeper ship intake measurements) in the tropical Pacific. No indications for uncorrected inhomogeneities of land surface temperatures could be found. Near-surface temperatures have biases in the boundary layer in both reanalyses, presumably due to the incorrect treatment of snow cover. The increase of near-surface compared to lower tropospheric temperatures in the last two decades may be due to a combination of several factors, including high-latitude near-surface winter warming due to an enhanced NAO and upper-tropospheric cooling due to stratospheric ozone decrease. Received: 5 May 1999 / Accepted: 15 December 1999  相似文献   

20.
Global spatial distribution of oscillations in the period bands linked to the quasi-biennial oscillation (QBO) and to the 11-year sunspot cycle (SSC) was investigated using the pseudo-2D wavelet transform. The results were obtained for the ERA-40, NCEP-DOE 2, NCEP/NCAR, and Twentieth Century Reanalysis V2 datasets. Those included time series of air temperature and zonal and meridional wind velocities were examined for all reanalyzed series from 1,000 up to 10 hPa. Most of the datasets covered the second half of the twentieth century. The results are generally in agreement with other related studies, and they point to the presence of the QBO in the tropical stratosphere along with the regions of induced changes in residual circulation, temperature, or ozone amount across extratropics. The SSC imprint is located mainly over similar locations showing that the cycles’ signals are mutually affected there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号