首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用线性倾向率和Mann-Kendall非参数检验及克里金(Kriging)空间插值法,分析石羊河流域气温、降水量和蒸发量3个气候要素的年代际时空变化特征。结果表明:1960-2009年石羊河流域气温最小增速为0.25 ℃/10 a,高于中国及全球平均增速,且石羊河流域东部地区增温速度大于流域西部;20世纪60年代石羊河流域气温为降低趋势,其他年代流域大部地区均为增温趋势,且这种增温趋势是突变的。石羊河流域各年代及50 a平均降水量流域西部地区均比东部地区增加明显,近50 a石羊河流域降水量的变化趋势大多数未通过显著性检验,流域降水量的变化是由于降水的年际振荡造成的。近50 a石羊河流域大部地区的蒸发量呈先减少后增加的趋势,除民勤外,流域各地区蒸发量的减少或增加均存在突变。石羊河流域气温持续升高和蒸发量增加及二者的协同关系可能导致区域干旱的加剧。  相似文献   

2.
1951-2005年内蒙古东部气候变化特征分析   总被引:4,自引:1,他引:3       下载免费PDF全文
选取1951-2005年内蒙古东部4盟市48个地面气象观测站的地面气象观测资料,采用趋势分析法分析了内蒙古东部地区气温、降水、风速和日照时数的变化趋势及空间分布特征。结果表明:近50 a来内蒙古东部地区气温升高,且极端最低温度升高的程度大于极端最高气温升高的程度;呼伦贝尔东部和赤峰西南部降水增加较明显,通辽降水减少最明显;平均风速变小,仅通辽呈风速增大的趋势;日照时数和降水量的变化趋势相反。  相似文献   

3.
采用海南岛7个气象站观测的气温、降水、平均风速、相对湿度、日照时数和蒸发量等气候要素资料,分析了1959-2013年海南岛各气候要素的时空分布特征和变化趋势。结果表明:(1)海南岛多年平均降水量和相对湿度在中部山区多、西部沿海少,气温、平均风速、日照时数和蒸发量的空间分布则正好相反。(2)近55年海南岛年均气温和降水量均呈增长趋势,平均风速、相对湿度、日照时数和蒸发量降低趋势显著。其中,气温、降水量、相对湿度、平均风速、日照时数和蒸发量分别在1980、2007、1991、1983、1995和1992年前后发生突变。(3)气温增温率在海南岛中部山区琼中附近最高,降水量增长率在南部三亚附近最高;相对湿度、平均风速、日照时数、蒸发量降低率则分别在海南岛东北部区域、东部琼海附近、北部海口附近、中部山区最大。(4)气温、降水量、日照时数和蒸发量年内分布不均,而相对湿度和平均风速年内变化相对较小;各月气温和蒸发量年际变率相对较小,相对湿度、平均风速、日照时数、以及5-10月降水量年际变率相对较大。  相似文献   

4.
为了研究中国不同区域气候变化特征,将全国按照气候区域划分为11个气候区,并利用1951—2009年中国194个国家基本/基准站月、年气温和降水观测资料,对全国及每个气候区平均温度及降水量的年和季节变化特征进行分析。结果表明:中国及各地区增温趋势均为极显著增加,尤其近20 a增温速度更快;而2007年成为有记录以来最暖的一年;中国冬季平均温度上升趋势最明显,春季次之,夏季几乎没有变化。中国平均年总降水量20世纪50年代最多,2000年代最少;而华北地区的年降水量减少最快;在四季降水中,中国只有夏季降水量波动略有增加,且各区域降水分布具有明显的南北差异特征。  相似文献   

5.
1951~2010年云贵高原大理和丽江气温、降水的气候特征分析   总被引:2,自引:0,他引:2  
利用大理和丽江气象站1951~2010年的逐日气象资料,分析了横断山脉东部气温、降水的气候特征。结果表明,1991年以后,大理和丽江地区均存在显著增温的趋势(0.58和0.55℃/10 a),明显高于同时期中国平均气温的增加幅度;而在1991年之前,大理和丽江的年平均气温呈现下降或微弱上升的趋势(-0.14和0.07℃/10 a)。与夏季平均气温的增温幅度相比,冬季平均气温的增温更显著,且其变化趋势与年均气温的气候特征是一致的。大理和丽江年总降水及各季节降水量在1951~2010年并没有明显增加或减少的趋势。大理和丽江雨季开始的时间分别为第28候和第30候,持续时间分别约为5.5和4.5个月。20世纪80年代以后,丽江年平均风速的减小强度明显大于大理,这是因为丽江站地处城区,城市化剧烈,地表粗糙度增加显著。日照时数与云量呈反相的季节变化,降水量的多年平均的逐候变化与日照时数、总云量、尤其是低云云量相关,随风速增大而减小。  相似文献   

6.
近54年中国地面气温变化   总被引:192,自引:12,他引:180  
采用国家基准气候站和基本气象站地面月平均气温资料,在严格质量控制和非均一性订正的基础上,分析了1951年以来中国大陆地区近地表年和季节平均气温演化的时间与空间特征.结果表明,我国近54年来年平均地表气温变暖幅度约为1.3℃,增温速率接近0.25℃/10 a,比全球或半球同期平均增温速率高得多.全国大范围增暖主要发生在近20余年.气温变化的季节差异和空间特征与前人分析结论基本一致,冬季增温速率高达0.39℃/10 a,春季为0.28℃/10 a,秋季0.20℃/10 a,夏季增温速率最小,但也达到0.15℃/10 a.我国20世纪80年代初期开始的明显增暖主要表现在冷季,但进入90年代以来夏季增暖也日趋明显.从区域上看,中国大陆地区最明显的增温发生在北方和青藏高原地区,而西南的四川盆地和云贵高原北部仍维持弱的降温趋势.值得提出的是,作者给出的结果尚未考虑城镇化对地面气温观测记录的影响.  相似文献   

7.
近50年阜新地区气候变化特征分析   总被引:4,自引:0,他引:4  
根据1951—2000年阜新地区气温和降水资料,运用一元回归、相关分析等数理统计方法,对近50 a阜新地区气候变化进行了分析。分析表明:近50 a阜新地区年平均气温呈上升趋势,增温率为0.24℃/10 a,近30 a增温尤其明显。不同季节平均气温的变化趋势与年平均气温变化趋势基本一致,仅冬季平均气温有差异。根据近50 a冷暖波动情况,可将阜新地区划分成2个冷期和2个暖期。近50 a阜新地区年降水量呈下降趋势,递减率为8.009 mm/10 a,但是近30 a降水量呈上升趋势。各季节中夏、秋、冬季降水量呈上升趋势,但春季降水呈下降趋势。近50 a阜新地区降水变化可分为3个多雨期和3个少雨期。  相似文献   

8.
峨眉山近55a来水资源变化的多时间尺度分析   总被引:2,自引:1,他引:1  
郭洁  李国平 《气象科学》2008,28(5):552-557
利用峨眉山1951-2005年逐月气温和降水观测资料,利用高桥浩一郎公式计算出地表蒸发量及水资源量.分析了峨眉山近55a来降水量、蒸发量及水资源的气候特征和变化趋势,并利用墨西哥帽子小波变换分析了水资源的时间-频率的多层次时间尺度变化特征,揭示了在不同时间尺度下峨眉山水资源序列变化的周期和突变点,并根据主周期对未来水资源变化趋势进行了预测.  相似文献   

9.
西安近50年气候变化初步分析   总被引:1,自引:1,他引:1       下载免费PDF全文
利用西安1951—2000年的气温、降水、最高气温、最低气温、低云量和总云量资料,初步分析了近50a西安的气候变化特征,结果表明西安气候趋向变暖,特别是近10a平均气温升高明显,较20世纪50年代上升0.9oC,其中平均最低气温较最高气温上升幅度大,对增温的贡献较大,冬季变暖明显;降水量减少,旱年增多;云量减少,特别是低云量减少明显,与降水量有较好的对应关系。  相似文献   

10.
为了解巴彦淖尔市近60 a的气候变化特征,基于巴彦淖尔市9个气象观测站1961—2020年的逐月平均气温、降水量、日照时数、瞬时风速资料,采用线性倾向趋势分析、滑动平均法、M-K检验法、累计距平法、滑动t检验法、Morlet小波分析法对气候变化特征进行分析。结果表明:(1)近60 a巴彦淖尔市年平均气温增温趋势,年日照时数、年平均风速减少趋势显著,年降水量变化趋势不显著;(2)空间分布上,年平均气温为北低南高,年降水量为东多西少,年日照时数为西北、东南部相对多,其余地区相对少,年平均风速为南小北大;(3)年平均气温在1996年发生突变,年日照时数在1999、2014年发生突变,年平均风速在1982年发生突变,年降水量未发生突变;(4)主要的周期振荡,年平均气温、年降水量在30、13 a左右,年日照时数在13 a左右,年平均风速在20 a左右和10 a左右;(5)北极涛动指数对春冬季气温、春季降水、秋冬季风速有较为显著的影响,北大西洋涛动指数对春冬季气温、夏冬季风速有较为显著的影响,南方涛动指数对冬季降水有较为显著的影响,太平洋北美指数对冬季气温、春季降水有较为显著的影响。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

13.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

14.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

15.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography.  相似文献   

16.
The variation of the East Asian jet stream(EAJS) associated with the Eurasian(EU) teleconnection pattern is investigated using 60-yr NCEP–NCAR daily reanalysis data over the period 1951–2010. The EAJS consists of three components: the polar front jet(PFJ); the plateau subtropical jet(PSJ); and the ocean subtropical jet(OSJ). Of these three jets over East Asia,the EU pattern exhibits a significant influence on the PFJ and OSJ. There is a simultaneous negative correlation between the EU pattern and the PFJ. A significant positive correlation is found between the EU pattern and the OSJ when the EU pattern leads the OSJ by about 5 days. There is no obvious correlation between the EU pattern and the PSJ. The positive EU phase is accompanied by a weakened and poleward-shifted PFJ, which coincides with an intensified OSJ. A possible mechanism for the variation of the EAJS during different EU phases is explored via analyzing the effects of 10-day high-and low-frequency eddy forcing. The zonal wind tendency due to high-frequency eddy forcing contributes to the simultaneous negative correlation between the EU pattern and the PFJ, as well as the northward/southward shift of the PFJ. High- and low-frequency eddy forcing are both responsible for the positive correlation between the EU pattern and the OSJ, but only high-frequency eddy forcing contributes to the lagged variation of the OSJ relative to the EU pattern. The negative correlation between the EU pattern and winter temperature and precipitation anomalies in China is maintained only when the PFJ and OSJ are out of phase with each other. Thus, the EAJS plays an important role in transmitting the EU signal to winter temperature and precipitation anomalies in China.  相似文献   

17.
By using the gauged rainfall in 160 stations within mainland China and the NCEP/NCAR reanalysis data, the impacts of anomalous SST in Kuroshio and its extension on precipitation in Northeast China were investigated. The results show that a difference in the meridional circulation such as the East Asia/Pacific teleconnection pattern(EAP)may be responsible for the difference in rainfall between 1998 and 2010. In comparison with 1998, the anomalous meridional circulation pattern in 2010 shifted northeastward, and then the western subtropical high, the mid-latitudinal trough and the northeastern Asia blocking high also shifted northeastward, causing intensified convergence of the cold and warm air masses at the southern region and thus more rainfall in the southwestern region and less in the northwestern region. In 1998, the anomalous cyclone, one component of the meridional pattern, located at the Songhuajiang-Nengjiang River basin, resulted in more rainfall in the majority of the area. The results of observation and the model show that the difference in SSTA in Kuroshio and its extension under the background of different El Ni觡o events is the key point:(1) The anomalous warmth moved westward from the mid-Pacific to the east of the Philippine Sea during the central event, which led the heat resources shifting to the northeast in 2010; subsequently, a shift occurred to the north of the anomalous ascent and decent, followed by a warm SSTA in the region of Kuroshio's extension in 2010 and Kuroshio in 1998.(2) The warm SSTA in the Kuroshio extension causing the Rossby wave activity flux strengthened in 2010, and then the westerly jet shifted northward and extended eastward. A warm SSTA in Kuroshio and cold SSTA in its extension in 1998 caused the westerly jet to shift southward and weaken. As a result,the anomalous anticyclone and cyclone shifted northward in 2010, and the blocking high also shifted northward.  相似文献   

18.
<p>Using the multielements similarity measurement method and 1950–C2017 NCEP/NCAR gridded daily reanalysis datasets, we analyzed season duration in China during 1950–C2016, and we defined the element with maximum absolute sensitivity as the key impact element at each point using the sensitivity analysis method. The decadal change of season duration and its key impact element before and after 1980 were studied. The results indicated obvious meridional and zonal differences in the distribution of season duration for the 67-year average, and that the key impact element has the same distribution characteristics as season duration. In addition, complementary relationships were found between the durations of spring and summer, autumn and winter, and the cold and warm seasons. Of those, the complementary relationship between the durations of spring and summer was strongest and the regions of complementarity were numerous. The complementary regions of autumn and winter durations were found mainly in western China. In the cold and warm seasons, the complementary regions were widespread and the complementary relationship was generally weak. Comparison of the periods before and after 1980 revealed an east–Cwest difference in the interdecadal variation of season duration. Interdecadal variation in spring and summer was found concentrated in northern and western regions, while that in autumn and winter was concentrated in the western region. Areas of significant interdecadal variation of the key elements were found concentrated in northern and western regions, corresponding well with the areas of significant interdecadal variation of season duration.</p>  相似文献   

19.
Understanding potential future influence of environmental, economic, and social drivers on land-use and sustainability is critical for guiding strategic decisions that can help nations adapt to change, anticipate opportunities, and cope with surprises. Using the Land-Use Trade-Offs (LUTO) model, we undertook a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia’s agricultural land from 2013–2050, under interacting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land-uses and assessed the sustainability of economic returns and ecosystem services at high spatial (1.1 km grid cells) and temporal (annual) resolution. We found substantial potential for land-use transition from agriculture to carbon plantings, environmental plantings, and biofuels cropping under certain scenarios, with impacts on the sustainability of economic returns and ecosystem services including food/fibre production, emissions abatement, water resource use, biodiversity services, and energy production. However, the type, magnitude, timing, and location of land-use responses and their impacts were highly dependent on scenario parameter assumptions including global outlook and emissions abatement effort, domestic land-use policy settings, land-use change adoption behaviour, productivity growth, and capacity constraints. With strong global abatement incentives complemented by biodiversity-focussed domestic land-use policy, land-use responses can substantially increase and diversify economic returns to land and produce a much wider range of ecosystem services such as emissions abatement, biodiversity, and energy, without major impacts on agricultural production. However, better governance is needed for managing potentially significant water resource impacts. The results have wide-ranging implications for land-use and sustainability policy and governance at global and domestic scales and can inform strategic thinking and decision-making about land-use and sustainability in Australia. A comprehensive and freely available 26 GB data pack (http://doi.org/10.4225/08/5604A2E8A00CC) provides a unique resource for further research. As similarly nuanced transformational change is also possible elsewhere, our template for comprehensive, integrated, quantitative, and high resolution scenario analysis can support other nations in strategic thinking and decision-making to prepare for an uncertain future.  相似文献   

20.
碳交易政策的经济影响:以广东省为例   总被引:1,自引:0,他引:1  
通过构建广东省两区域动态模型,对广东省碳交易及其他政策措施进行定量评估,分析实施可调控总量的碳交易政策机制对广东省及参与交易部门的经济影响。研究结果表明,按照减排情景到2015年广东完成19.5%的碳强度下降目标,相比基准情景,GDP将减少0.7%;按照强减排情景到2015年将完成20.5%的碳强度下降目标,相比基准情景GDP将减少0.9%;如果在强减排情景的基础上实施碳交易政策,GDP相对基准情景减少0.8%,到2015年实施碳交易政策可减少GDP损失约90亿元,说明广东建立碳排放权交易机制能够发挥支持经济发展和节能减碳双赢的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号