首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the participation of aerosols, and affects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan(KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect effects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm-3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced significantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations.These different trends of aerosol-induced precipitation change are mainly ascribed to differences in rain water content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientific understanding of aerosol-cloud-precipitation interactions.  相似文献   

2.
四川西部夏季降水从1950s起的衰减趋势   总被引:1,自引:0,他引:1       下载免费PDF全文
Changing precipitation in the densely populated Sichuan basin may have a great impact on human life. This study analyzes the change in summer precipitation since 1951 over the western Sichuan basin, one of the regions of the heaviest rainfall in China, by using two datasets provided by the Chinese Meteorological Data Center. The results indicate that summer (from June to September) precipitation over the western Sichuan basin shows a significantly decreasing trend. The summer precipitation over this region has decreased by about 20% since the 1950s, with a rate of decrease of about 40 mm per decade.  相似文献   

3.
Monthly mean surface air temperatures and precipitation at 20 meteorological stations in the Jinsha River Valley(JRV) of southwest China were analyzed for temporal-spatial variation patterns during the period 1961-2010.The magnitude of a trend was estimated using Sen's Nonparametric Estimator of Slope approach.The statistical significance of a trend was assessed by the MK test.The results showed that mean annual air temperature has been increasing by 0.08℃/decade during the past 50 years as a whole.The climate change trend in air temperature was more significant in the winter(0.13℃/decade) than in the summer(0.03℃/decade).Annual precipitation tended to increase slightly thereafter and the increasing was mainly during the crop-growing season.Both the greatest variation of the annual mean temperature and annual precipitation were observed at the dry-hot valley area of middle reaches.Significant warming rates were found in the upper reaches whereas the dry-hot basins of middle reaches experienced a cooling trend during the past decades.Despite of the overall increasing in precipitation,more obvious upward-trends were found in the dry-hot basins of middle reaches whereas the upper reaches had a drought trend during the past decades.  相似文献   

4.
Aerosol–cloud–radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations.Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity(typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type.  相似文献   

5.
Trends in graded precipitation in China from 1961 to 2000   总被引:3,自引:0,他引:3  
Daily precipitation rates observed at 576 stations in China from 1961 to 2000 were classified into six grades of intensity, including trace (no amount), slight (≤ 1 mm d^-1), small, large, heavy, and very heavy. The last four grades together constitute the so called effective precipitation (〉 1 mm d^-1). The spatial distribution and temporal trend of the graded precipitation days are examined. A decreasing trend in trace precipitation days is observed for the whole of China, except at several sites in the south of the middle section of the Yangtze River, while a decreasing trend in slight precipitation days only appears in eastern China. The decreasing trend and interannual variability of trace precipitation days is consistent with the warming trend and corresponding temperature variability in China for the same period, indicating a possible role played by increased surface air temperature in cloud formation processes. For the effective precipitation days, a decreasing trend is observed along the Yellow River valley and for the middle reaches of the Yangtze River and Southwest China, while an increasing trend is found for Xinjiang, the eastern Tibetan Plateau, Northeast China and Southeast China. The decreasing trend of effective precipitation days for the middle- lower Yellow River valley and the increasing trend for the lower Yangtze River valley are most likely linked to anomalous monsoon circulation in East China. The most important contributor to the trend in effective precipitation depends upon the region concerned.  相似文献   

6.
In this study,the mechanisms underlying the decadal variability of late spring precipitation in South China are investigated by using the latest Community Earth System Model version 1 (CESM1).We aim to unravel the effects of different climate forcing agents such as aerosols and greenhouse gases (GHGs) on the decadal variation of precipitation,based on transient experiments from pre-industry (for year 1850) to present-day (for year 2000).Our results reveal that:(1) CESM1 can reproduce the climatological features of atmospheric circulation and precipitation for the late spring in South China; (2) only simulations including the forcing of anthropogenic aerosols can reproduce the observed decreasing trend of late spring precipitation from 1950-2000 in South China; (3) aerosols affect the decadal change of precipitation mainly by altering the large-scale atmospheric circulation,and to a less extent by increasing the lower-tropospheric stability to inhibit the convective precipitation; and (4) in comparison,other climate forcing agents such as GHGs have much smaller effects on the decadal change of spring precipitation in South China.  相似文献   

7.
Typhoon KROSA in 2007 is simulated using GRAPES, a mesoscale numerical model, in which a two-parameter mixed-phase microphysics scheme is implanted. A series of numerical experiments are designed to test the sensitivity of landfalling typhoon structure and precipitation to varying cloud microphysics and latent heat release. It is found that typhoon track is sensitive to different microphysical processes and latent heat release. The cloud structures of simulated cyclones can be quite different with that of varying microphysical processes. Graupel particles play an important role in the formation of local heavy rainfall and the maintenance of spiral rainbands. Analysis reveals that the feedback of latent heat to dynamic fields can significantly change the content and distribution of cloud hydrometeors, thus having an impact on surface precipitation.  相似文献   

8.
Simulated regional precipitation, especially extreme precipitation events, and the regional hydrologic budgets over the western North Pacific region during the period from May to June 2008 were investigated with the high-resolution (4-km grid spacing) Weather Research and Forecast (WRF v3.2.1) model with explicit cloud microphysics. The model initial and boundary conditions were derived from the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Reanalysis 2 data. The model precipitation results were evaluated against the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 product. The results show that the WRF simulations can reason- ably reproduce the spatial distributions of daily mean precipitation and rainy days. However, the simulated frequency distributions of rainy days showed an overestimation of light precipitation, an underestimation of moderate to heavy precipitation, but a good representation of extreme precipitation. The downscaling approach was able to add value to the very heavy precipitation over the ocean since the convective processes are resolved by the high-resolution cloud-resolving model. Moreover, the water vapor budget analysis indi- cates that heavy precipitation is contributed mostly by the stronger moisture convergence; whereas, in less convective periods, the precipitation is more influenced by the surface evaporation. The simulated water vapor budgets imply the importance in the tropical monsoon region of cloud microphysics that affects the precipitation, atmospheric latent heating and, subsequently, the large-scale circulation.  相似文献   

9.
The interdecadal characteristics of rainfall and temperature in China before and after the abrupt change of the general circulation in 1976 are analyzed using the global 2.5°×2.5° monthly mean reanalysis data from the National Centers for Environmental Prediction of US and the precipitation and temperature data at the 743 stations of China from the National Climate Center of China. The results show that after 1976, springtime precipitation and temperature were anomalously enhanced and reduced respectively in South China, while the reverse was true in the western Yangtze River basin. In summer, precipitation was anomalously less in South China, more in the Yangtze River basin, less again in North China and more again in Northeast China, showing a distribution pattern alternating with negative and positive anomalies (" , +, -, +"). Meanwhile, temperature shows a distribution of warming in South China, cooling in the Yangtze and Huaihe River basins, and warming again in northern China. In autumn, precipitation tended to decrease and temperature tended to increase in in South China and warming was most parts of the country. In winter, the trend across all parts of China. precipitation increased moderately The interdecadal decline of mean temperature in spring and summer in China was mainly due to the daily maximum temperature variation, while the interdecadal increase was mainly the result of the minimum temperature change. The overall warming in autumn (winter) was mostly influenced by the minimum (maximum) temperature variation. These changes were closely related to the north-south shifts of the ascending and descending branches of the Hadley cell, the strengthening and north-south progression of the westerly jet stream, and the atmospheric stratification and water vapor transport conditions.  相似文献   

10.
Aerosol particles can serve as cloud condensation nuclei(CCN)to influence orographic clouds.Autoconversion,which describes the initial formation of raindrops from the collision of cloud droplets,is an important process for aerosol-cloud-precipitation systems.In this study,seven autoconversion schemes are used to investigate the impact of CCN on orographic warm-phase clouds.As the initial cloud droplet concentration is increased from 100 cm-3to 1000 cm-3(to represent an increase in CCN),the cloud water increases and then the rainwater is suppressed due to a decrease in the autoconversion rate,leading to a spatial shift in surface precipitation.Intercomparison of the results from the autoconversion schemes show that the sensitivity of cloud water,rainwater,and surface precipitation to a change in the concentration of CCN is different from scheme to scheme.In particular,the decrease in orographic precipitation due to increasing CCN is found to range from-87%to-10%depending on the autoconversion scheme.Moreover,the surface precipitation distribution also changes significantly by scheme or CCN concentration,and the increase in the spillover(ratio of precipitation on the leeward side to total precipitation)induced by increased CCN ranges from 10%to 55%under different autoconversion schemes.The simulations suggest that autoconversion parameterization schemes should not be ignored in the interaction of aerosol and orographic cloud.  相似文献   

11.
为全面了解水汽在气溶胶影响雷暴云电过程中的作用,本研究在已有的二维雷暴云起、放电模式基础上,通过改变相对湿度和气溶胶初始浓度(文中气溶胶浓度均指气溶胶数浓度)进行敏感性数值模拟试验。结果表明:(1)随着气溶胶浓度升高,雷暴云产生更多的小云滴,降水过程受到抑制。而当水汽含量升高时,云滴数浓度的增长速度更快,雨滴数浓度升高,缓解了降水变弱的趋势。(2)水汽含量较低时,随着气溶胶浓度升高,更多小云滴被带入冻结层形成大量小冰晶,霰粒含量升高,雷暴云起电过程增强。气溶胶浓度升高至一定的量级(3000 cm?3)时,冰晶尺度减小和雨滴浓度降低抑制霰粒生长,雷暴云起电过程受到削弱。感应起电和非感应起电过程随气溶胶浓度升高呈先增强后减弱的趋势。水汽含量的升高促进了冰相粒子的增长,起电过程呈现持续增强的趋势,气溶胶浓度为3000 cm?3时起电率达到极值,电荷密度的增幅扩大。(3)水汽含量较低时,雷暴云难以发展成深厚的系统,气溶胶浓度变化对其影响不明显,电荷结构由三极性发展,在消散期演变为偶极性电荷结构;水汽含量较高时,雷暴云迅速发展成深厚的系统,随着气溶胶浓度升高,在雷暴发展旺盛阶段电荷分布表现为多层复杂结构。研究显示水汽含量在气溶胶浓度变化对雷暴云微物理、起电过程及电荷结构的作用中扮演重要角色。   相似文献   

12.
The National Center for Atmospheric Research Community Atmosphere Model (version 3.5) coupled with the Morrison?CGettelman two-moment cloud microphysics scheme is employed to simulate the aerosol effects on clouds and precipitation in two numerical experiments, one representing present-day conditions (year?2000) and the other the pre-industrial conditions (year?1750) over East Asia by considering both direct and indirect aerosol effects. To isolate the aerosol effects, we used the same set of boundary conditions and only altered the aerosol emissions in both experiments. The simulated results show that the cloud microphysical properties are markedly affected by the increase in aerosols, especially for the column cloud droplet number concentration (DNC), liquid water path (LWP), and the cloud droplet effective radius (DER). With increased aerosols, DNC and LWP have been increased by 137% and 28%, respectively, while DER is reduced by 20%. Precipitation rates in East Asia and East China are reduced by 5.8% and 13%, respectively, by both the aerosol??s second indirect effect and the radiative forcing that enhanced atmospheric stability associated with the aerosol direct and first indirect effects. The significant reduction in summer precipitation in East Asia is also consistent with the weakening of the East Asian summer monsoon, resulting from the decreasing thermodynamic contrast between the Asian landmass and the surrounding oceans induced by the aerosol??s radiative effects. The increase in aerosols reduces the surface net shortwave radiative flux over the East Asia landmass, which leads to the reduction of the land surface temperature. With minimal changes in the sea surface temperature, hence, the weakening of the East Asian summer monsoon further enhances the reduction of summer precipitation over East Asia.  相似文献   

13.
This study incorporated the Weather Research and Forecasting (WRF) model double-moment 6-class (WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme (WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei (CCN) number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration (Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration (Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.  相似文献   

14.
The novel model system LM-SPECS is presented combining a spectral bin microphysics scheme and the three-dimensional Lokalmodell (LM, today called COSMO) of the German Weather Service (“Deutscher Wetterdienst”). The model is designed to investigate in detail the interaction of atmospheric aerosol particles, clouds and precipitation. The microphysics scheme includes a combined spectrum of wetted aerosols, cloud droplets and rain drops. As a first application of the model, sensitivity studies on an artificial deep convective cloud were done. The results produced by LM-SPECS are satisfying. The studies show, e.g., that a diminished initial particle number leads to larger cloud droplets and thus to a higher efficiency of coalescence. This results in a larger amount of precipitation. Furthermore, studies on mixed phase clouds show the influence of varying ice nuclei, such as bacteria, kaolinite and soot, on cloud properties. Here, a more effective freezing leads to an increased number of ice particles with smaller radii. The results point to the importance of a detailed knowledge of the underlying microphysical processes in order to understand the formation of clouds and precipitation more accurately. Though to date the model was applied to artificial cases only, the use of the mesoscale weather model allows for more complex realistic cases which are subject to further studies.  相似文献   

15.
《Atmospheric Research》2009,91(2-4):233-242
The novel model system LM-SPECS is presented combining a spectral bin microphysics scheme and the three-dimensional Lokalmodell (LM, today called COSMO) of the German Weather Service (“Deutscher Wetterdienst”). The model is designed to investigate in detail the interaction of atmospheric aerosol particles, clouds and precipitation. The microphysics scheme includes a combined spectrum of wetted aerosols, cloud droplets and rain drops. As a first application of the model, sensitivity studies on an artificial deep convective cloud were done. The results produced by LM-SPECS are satisfying. The studies show, e.g., that a diminished initial particle number leads to larger cloud droplets and thus to a higher efficiency of coalescence. This results in a larger amount of precipitation. Furthermore, studies on mixed phase clouds show the influence of varying ice nuclei, such as bacteria, kaolinite and soot, on cloud properties. Here, a more effective freezing leads to an increased number of ice particles with smaller radii. The results point to the importance of a detailed knowledge of the underlying microphysical processes in order to understand the formation of clouds and precipitation more accurately. Though to date the model was applied to artificial cases only, the use of the mesoscale weather model allows for more complex realistic cases which are subject to further studies.  相似文献   

16.
基于1976~2018年山西东南部11个地面气象观测站的逐月日照时数资料,分析了近43a山西东南部日照时数的时空变化特征,以及总云量、低云量、水汽压、降水量、雾日数和霾日数等气象因子对日照时数的影响。结果表明:山西东南部平均年日照时数空间差异显著,呈南北多、东西和中部少的分布特征;近43a年山西东南部日照时数呈显著减少趋势,气候倾向率为?71.9h/10a,2005年发生由多转少的突变;四季日照时数由多到少依次为春季、夏季、秋季及冬季,均呈减少趋势,其中春季趋势最小,秋季趋势最大;各月日照时数分布不均匀,5月最多,2月最少,除3月日照时数呈增加趋势外,其余各月均呈减少趋势,6月和9月的减少趋势最为显著;近43a总云量、雾日数、霾日数均呈显著增加趋势,而低云量、水汽压、降水量变化趋势不显著;雾日数增加是导致春季、秋季、冬季和年日照时数减少的重要因子之一,总云量增加是导致夏季、秋季、冬季和年日照时数减少的重要因子之一,降水量增加对夏季日照时数减少也有一定影响。   相似文献   

17.
利用1960—2005年京津冀地区的地面太阳辐射资料,综合分析了该地区45年太阳辐射的分布状况和变化趋势,并结合云量、降水量、气溶胶光学厚度和大气含水量,分析了该地区太阳辐射的变化原因。结果表明:(1)京津冀地区的太阳辐射并没有出现20世纪80年代末到90年代中期的"变亮"现象;同期冬、春季总辐射下降,夏、秋季上升;(2)在1985—1997年间,依据总辐射变化情况,京津冀地区被分为截然相反的两个区域:东部地区总辐射增加,倾向率为1.016 MJ.m-2.mon-1.(10a)-1;西部地区总辐射减少,倾向率为10.092MJ.m-2.mon-1.(10a)-1;(3)总辐射增加的区域,主要是由于云量减少、降水量减少所伴随的日照时数增加以及气溶胶光学厚度降低所造成的;(4)总辐射减少的区域,云量、气溶胶光学厚度和降水量变化并不显著,总辐射持续减少。  相似文献   

18.
反演大气垂直速度和雨滴谱分布是研究云降水机制和云微物理信息的重要内容,对人工预报天气、干预天气都有重要意义。针对2021年8月29日安徽省内毫米波雷达探测到的一次对流云降水过程,处理毫米波雷达的功率谱数据并进行大气垂直速度和雨滴谱反演。在小粒子示踪法的基础上引入改进小粒子示踪法:选取有效云信号段中最小功率对应的谱点作为反演大气垂直速度的示踪物。首先,根据改进前后的小粒子示踪法分别从功率谱数据中反演大气垂直速度,并跟基数据反演大气速度的结果展开对比分析。进一步得到粒子在静止空气中的下落速度,根据现有粒子下落速度-粒子直径之间的经验公式计算反演粒子直径。研究表明:(1) 采用改进后的小粒子示踪法反演大气垂直速度得到的结果比小粒子示踪法得到的结果更精确,在云层内部两者误差较大;(2) 进一步得到粒子下落速度,结合探测时段的天气状况,得到的粒子速度与大气速度可很好地契合,跟对流云天气情况信息大致吻合;(3) 粒子浓度是反演雨滴谱分布时需要注意的主要参数,云在快速发展过程中,内部粒子持续朝外部扩张,云内部的粒子浓度较小,云边界的粒子浓度反而较大。  相似文献   

19.
利用WRF v4.0中尺度模式及0.25 °×0.25 °高分辨率的GDAS分析资料,对2017年6月15日发生在华南的一次典型暖区暴雨过程进行数值研究。多源观测资料对比分析表明,Thompson aerosol aware云微物理方案与YSU边界层方案组合合理再现了此次暴雨的演变过程。观测与模拟的强风速下传、低层风场切变及降水之间存在较好的对应关系,强的雷达反射率与水汽通量散度中心一致。在中尺度对流系统(MCS)发展和成熟阶段,冷池的出流抬升是新生对流的重要触发条件,地形的动力抬升作用并非主导。云微物理分析指出,由于华南上空充沛的水汽及过冷雨水,雪的最大来源项表现为水汽凝华成雪,而霰的最大来源项为过冷雨滴碰并冰晶、雪并冻结成霰。在零度层之下的1.5 km区域,冰相粒子的融化率可达暖雨过程(1×10-4g/(kg·s)的2倍,暗示其在融化层对雨水形成的支配作用,而雪霰的重力沉降扮演了重要角色。此外,相变过程显著影响着大气的温度变化,当对流云底较低时,低层的水汽凝结将抵消雨水蒸发导致的冷却作用,减弱地面冷池的强度。   相似文献   

20.
利用融水县气象站1959-2013年的降水资料,采用数理统计和线性倾向估计分析方法,分析了融水县降水分布特征及其变化规律。结果表明:融水县降水分配不均,主要集中在4-8月,6月最多,5月次之;年暴雨日数6.9d,暴雨持续时间多为1d,最长4d;近55年来融水县年降水量和汛期(4-9月)降水量均呈减少趋势,每10年分别减少16mm和6mm,而主汛期(5-8月)的降水量却呈增多趋势,每10年增加13mm,这预示着融水县未来降水可能更趋于集中在主汛期(5-8月),发生洪涝灾害的几率可能增多。此外,一日最大降水量呈增多趋势,预示未来降雨强度可能增大;春、秋季的降水量呈减少趋势,提示未来发生春旱、秋旱的几率可能增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号