首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
苏州城区大气边界层低空急流特征分析   总被引:1,自引:0,他引:1  
程佳  张宁  朱焱  刘培宁  陈燕 《气象科学》2016,36(6):843-848
利用2012年苏州城区风廓线雷达的观测资料,从低空急流个例分析入手,选取1、4、7、10月四个典型月份,分析该地区边界层低空急流的时空分布及强度变化特征。结果表明:冬春两季低空急流发生频率最高,夏季出现频率最低。在4个典型月份里低空急流均表现出日落后出现频率升高,夜间保持稳定,日出后出现频率降低的特征。全年有80%的低空急流分布在900 m以下高度上,冬、夏季平均高度最低。全年低空急流风速70%以上集中在4~12 m·s~(-1),小于4 m·s~(-1)和大于20 m·s~(-1)的低空急流出现频率较低。  相似文献   

2.
利用风廓线雷达资料对南京地区低空急流的统计分析   总被引:1,自引:0,他引:1  
为了解南京地区低空急流的活动特点,对两部风廓线雷达在2005—2008年收集的风廓线数据,分别从低空急流的月变化、日变化、急流中心特征以及伴随的天气情况等几方面开展了统计分析和对比研究。结果表明,低空急流存在明显的月变化及日变化规律,春、夏季出现低空急流次数多于秋、冬季;凌晨和夜间是低空急流活动的活跃期,且午夜出现极大风速的概率最大;低空急流中心主要出现在1 400 m高度以下,且低空急流中心速度的增强有利于降水的发生。夏季低空急流的出现有利于暴雨的发生。边界层风廓线雷达和对流层风廓线雷达的统计结果具有较好的一致性,两部雷达都能够较好地连续监测低空急流的发生发展。   相似文献   

3.
利用2011年12月~2013年3月CFL-03型风廓线雷达在乌鲁木齐市的风探测数据与同期的常规探空数据开展了比对分析,从而对风廓线雷达探测数据的可靠性和探测能力给予了评估。结果表明,受乌鲁木齐四季不同的气候背景影响,CFL-03型风廓线雷达的数据获取率在夏季最高,在冬季最低,80%的数据获取率等值线夏季、冬季各自达到的高度分别为4500m和1980m;受低空地物回波、探测盲区等因素影响,240m以下风廓线雷达探测的风速误差较大,240m以上风廓线雷达四季探测的风速普遍小于实况,误差在-1~0m/s之间的出现频率最高,介于28.8%~31.8%,且在四季最大频率出现的高度有所差异,总体来看夏季风速误差相对较小;风向误差总体在-22.5°~0°之间的出现频率最高,且随着高度增加频率增加;风廓线雷达风速的探测能力优于风向,二者与实况的相关系数各自为0.9左右和0.6~0.8;通过长时间序列的风速、风向资料的比较,说明CFL-03型风廓线雷达能够较为准确地反映冬季天气过程的演变,且能够较为精细地刻画夏季短时强降水天气过程中高低空气流的变化特点。在综合考虑低空地物回波、探测盲区因素以及高空气球探空飘移等多种因素影响的情况下,可见CFL-03型风廓线雷达对乌鲁木齐大气环境和天气过程拥有较可靠的监测能力。  相似文献   

4.
利用2000~2013年ERA-Interim再分析资料对塔克拉玛干地区风速廓线进行分析,发现在多年平均状态下边界层内存在风速极大值中心,表明该地区可能长时间、广泛存在低空急流。为进一步判定、分析可能存在的低空急流及其季节变化特征,本文从最大风速发生高度、逆温以及风切变3个方面考虑,给出了低空急流的具体判定条件。通过客观判定表明,塔克拉玛干地区常年存在偏东方向低空急流,具有较高的发生频率,最大频率出现在8月份达68.4%,最小频率在12月份,为54.5%。急流中心高度和最大风速均存在显著的季节变化:夏季低空急流发展最高,平均高度位于地面以上339.6 m,冬季高度最低,平均高度237.7 m,春、秋季高度相近约为290 m左右;急流最大风速春、夏季最强,平均值高于7.5 m/s,秋季风速减弱为6.3 m/s,冬季达到最小值5.0 m/s。此外,分析还发现急流最大风速先随高度上升而增加,达到地面以上某一高度范围后,又随高度增加而减小。  相似文献   

5.
乌鲁木齐风廓线雷达探测能力评估   总被引:1,自引:0,他引:1  
利用乌鲁木齐市2011年12月—2013年3月CFL-03风廓线雷达的风探测数据与同期的常规探空数据,对风廓线雷达探测数据的可靠性和探测能力给予了评估。结果表明,受乌鲁木齐四季不同的气候背景影响,风廓线雷达的数据获取率在夏季最高,在冬季最低,80%的数据获取率等值线在夏季、冬季各自达到的高度分别为4500 m和1980 m;240 m以下风廓线雷达探测的风速误差较大,240 m以上风廓线雷达四季探测的风速普遍小于实况,误差在-1~0 m/s之间的出现频率最高,介于28.8%~31.8%,且最大频率在四季出现的高度有所差异,总体来看夏季风速误差相对较小;风向误差总体在-22.5°~0°之间的出现频率最高,且随着高度增加频率增加;风廓线雷达对风速的探测能力优于风向,二者与实况的相关系数各自为0.9左右和0.6~0.8;通过对长时间序列的风速、风向资料的比较,说明风廓线雷达能够较为准确地反映冬季天气过程的演变,且能够较为精细地刻画夏季短时强降水天气过程中高低空气流的变化特点。在综合考虑低空地物回波、探测盲区因素以及高空气球探空飘移等多种因素影响的情况下,可见风廓线雷达对乌鲁木齐大气环境和天气过程拥有较可靠的监测能力。  相似文献   

6.
北京奥运期间一次暴雨过程风廓线资料特征   总被引:1,自引:0,他引:1  
翟亮 《气象》2008,(Z1)
通过分析2008年8月10—11日,北京暴雨天气过程中的两部风廓线仪(观象台、海淀)数据,总结其在此次过程中的特征发现:观象台与海淀两部风廓线仪在该地区强降水发生前,都监测到有低空急流的出现,但是出现时段、高度、维持时间、均不相同;在暴雨发生前,两部风廓线仪观测的垂直速度,均出现明显的变化,特别是海淀的垂直速度有大于8m.s-1的速度区,并到达地面;强降水发生前在垂直方向的温度平流同样有明显变化,冷暖平流随高度交替出现,且与低空急流出现的时间以及位置一致。由此可见低空急流与温度平流的变化有着重要联系。大气折射率结构常数可以与垂直速度相结合,为判断垂直方向大气的稳定程度以及降水提供辅助依据。  相似文献   

7.
王天义  朱克云  张杰  刘煦 《气象科技》2014,42(2):231-239
利用成都地区2010年8月和北京沙河地区2011年7—8月风廓线雷达以及多普勒天气雷达的风廓线探测资料,结合对应时段的天气现象相关记录,通过对比分析得到以下结论:①弱降水条件下,在300~2100m高度内,风廓线雷达与多普勒天气雷达探测具有很好的相关性,风向相关系数平均值为0.596,风速相关系数平均值为0.736,在做预报时两者可以同时应用,互为补充;②强降水天气条件下,风廓线雷达与多普勒天气雷达探测的风向、风速变化趋势基本一致,特别是在300~2100m之间各个高度上风向、风速相关性较好,风向相关系数平均值为0.573,风速相关系数为0.508,且风廓线雷达比多普勒天气雷达探测到的各层风向、风速变化更为详细、直观;③阴天条件下风廓线雷达与多普勒天气雷达的风向、风速相关性低层比高层好;④晴天条件下,风廓线雷达更适合用于预报和监测天气。  相似文献   

8.
祁凯  吴林林  张庆奎 《气象科学》2022,42(4):557-563
利用2012-2017年阜阳多普勒雷达与L波段雷达测风数据进行对比分析,统计两者的相关性和测量误差,进一步了解多普勒雷达风廓线产品的准确性和可信度。结果表明:两者测风结果一致性较好,风向和风速相关系数分别为0.97和0.94,标准差分别为19.5°和2.65 m·s^(-1)。多普勒雷达风速总体上在同一高度比L波段雷达风速偏小,两者风速相对偏差平均为24.48%;风速标准差随高度增高呈增大趋势,在降水期间对比差值小于非降水;风向标准差在7 km以下呈递减趋势,8 km以上有小幅增加趋势;风速相关系数随高度增加呈增大趋势,除低空偏低以外,其他高度相关系数均较高。  相似文献   

9.
高原地区风廓线雷达资料评估   总被引:3,自引:0,他引:3  
董保举  张晔  徐安伦 《气象科技》2009,37(5):580-583
在简述风廓线雷达原理的基础上,将风廓线雷达探测资料与探空资料进行对比分析,发现风速风向一致性较好,温度一致性较差。对风廓线资料总的数据获取率及不同天气条件下的数据获取率进行了统计,大理风廓线雷达边界层高度的数据获取率大于80%,在对流层低层以及边界层的探测能力要远远大于高层,高空雨季后的探测高度大于雨季前的探测高度。不同天气条件下低空的数据获取率差别不大,高空阴雨天的数据获取率大于晴天的数据获取率,阴雨天的探测高度大于晴天的探测高度。  相似文献   

10.
一次降雨过程风廓线雷达回波特征   总被引:1,自引:0,他引:1  
为应用风廓线雷达监测降水天气,通过对2006年南京地区一次春季降雨过程的边界层风廓线雷达探测数据与自动站雨量数据进行对比分析和相关性统计,研究降水发生、维持和消亡期间风廓线雷达资料的变化特征,分析风廓线雷达垂直速度、速度谱宽与降雨强度之间的相关性。结果表明:当降雨临近时,风廓线雷达水平风廓线上的空洞逐渐消失,当降雨结束时空洞再次出现,且伴随着低空急流的出现降水明显增强。随着降雨的发生,风廓线雷达产品的垂直速度、速度谱宽和折射率结构常数值均明显增大。整个降水期间,550 m高度层以下的垂直速度与降水量存在显著线性负相关,450—950 m高度层之间的速度谱宽与降水量存在显著线性正相关,可见垂直速度、速度谱宽的变化与降水强度关系密切;当垂直负速度变小或速度谱宽变大时,降水增强的可能性增大。研究结果揭示了风廓线雷达垂直速度、速度谱宽与降雨强度之间的内在联系,可为风廓线雷达应用于降雨天气监测提供参考。  相似文献   

11.
Nocturnal Low-Level Jet Characteristics Over Kansas During Cases-99   总被引:5,自引:1,他引:4  
Characteristics and evolution of the low-level jet (LLJ)over southeastern Kansas were investigated during the 1999 Cooperative Surface-AtmosphereExchange Study (CASES–99) field campaign with an instrument complement consisting of ahigh-resolution Doppler lidar (HRDL), a 60 m instrumented tower, and a triangle of Dopplermini-sodar/profiler combinations. Using this collection of instrumentation we determined thespeed UX, height ZX and direction DX of the LLJ. We investigate here the frequencyof occurrence, the spatial distribution, and the evolution through the night, of these LLJcharacteristics. The jet of interest in this study was that which generates the shear and turbulencebelow the jet and near the surface. This was represented by the lowest wind maximum.We found that this wind maximum, which was most often between 7 and 10 m s1,was often at or just below 100 m above ground level as measured by HRDL at the CASEScentral site. Over the 60 km profiler–sodararray, the topography varied by 100 m. The wind speed anddirection were relatively constant over this distance (with some tendency for strongerwinds at the highest site), but ZX was more variable. ZX was occasionally about equal at allthree sites, indicating that the jet was following the terrain, but more often it seemed to berelatively level, i.e., at about the same height above sea level. ZX was also more variable thanUX in the behaviour of the LLJ with time through the night, and on some nights $UX wasremarkably steady. Examples of two nights with strong turbulence below jet level were furtherinvestigated using the 60 m tower at the main CASES–99 site. Evidence of TKE increasing withheight and downward turbulent transport of TKE indicates that turbulence was primarilygenerated aloft and mixed downward, supporting the upside–down boundary layer notion in thestable boundary layer.  相似文献   

12.

The nocturnal low-level jet (LLJ) and orographic (gravity) waves play an important role in the generation of turbulence and pollutant dispersion and can affect the energy production by wind turbines. Additionally, gravity waves have an influence on the local mixing and turbulence within the surface layer and the vertical flux of mass into the lower atmosphere. On 25 September 2017, during a field campaign, a persistent easterly LLJ and gravity waves were observed simultaneously in a coastal area in the north of France. We explore the variability of the wind speed, turbulent eddies, and turbulence kinetic energy in the time–frequency and space domain using an ultrasonic anemometer and a scanning wind lidar. The results reveal a significant enhancement of the turbulence-kinetic-energy dissipation (by?50%) due to gravity waves in the LLJ shear layer (below the jet core) during the period of wave propagation. Large magnitudes of zonal and vertical components of the shear stress (approximately 0.4 and 1.5 m2 s?2, respectively) are found during that period. Large eddies (scales of 110 to 280 m) matching the high-wind-speed regime are found to propagate the momentum downwards, which enhances the mass transport from the LLJ shear layer to the roughness layer. Furthermore, these large-scale eddies are associated with the crests while comparatively small-scale eddies are associated with the troughs of the gravity wave.

  相似文献   

13.
We analyzed wind profiler data collected over Ulsan airport during the period from 2008 to 2009 to examine the characteristics of low level jets (LLJs). The Ulsan airport is located within the narrow valley with north-south axis. The frequency analysis results indicates that the nearly 19% of the total nocturnal periods have the presence of jets and LLJ occurrence rate is high in winter (32%) and low in summer (10%). The mode in the wind speed histogram is 4?C6 m s?1. A majority of jet occurs below 100 m (about 77.8 m) above ground. The predominant wind direction of jet is northerly. In order to examine the favorable conditions for LLJ formation of Ulsan airport, we investigated temperature difference between valley and plain at the surface and synoptic wind direction and speed at 850 hPa. Our results show that air temperature in the valley is lower than over the plain during the nighttime, indicating the existence of thermal forcing for along-valley wind. Under a significant temperature difference along the valley, westerly wind speed at 850 hPa is slightly weaker on LLJs event night than no event night, indicating weaker north-south large-scale pressure gradient on LLJ event night. The magnitude of northerly wind at 850 hPa is much stronger on event night than no event night, implying higher downward transfer of northerly wind on event night. Our findings suggest that jet formation over Ulsan airport is related to the strong northerly wind at 850 hPa in the presence of thermal forcing due to temperature contrast between valley and plain.  相似文献   

14.
The wind speed and direction measured over six months by a Doppler wind lidar (Windcube-8) were compared with wind cup anemometers mounted on the 325-m Beijing meteorological tower (BMT). Five mountain–plain wind cases characterized by wind direction shear were selected based on the high-frequency (1.1 s) wind profile of the Windcube-8 and analyzed with 1-h mesoscale surface weather charts. Also analyzed was the relationship between in-situ PM1 (aerodynamic diameter ≤ 1 μm) concentrations measured at 260 m on BMT and the carrier-to-noise ratio (CNR) of the co-located Windcube-8. The results showed that the 10-min averaged wind speed and direction were highly correlated (R = 0.96–0.99) at three matched levels (80, 140, and 200 m). The evening transition duration was 1–3 h, with an average wind speed of 1 m s–1 at 80 m above the ground. In addition, there was a zero horizontal-wind-speed zone along the wind direction shear line, and in one case, the wind speed was characterized by a Kelvin–Helmholtz gravity wave. The variability of the PM1 concentrations was captured by the CNR of the Windcube-8 in a fair weather period without the long-range transport of dust.  相似文献   

15.
Low-level katabatic wind profiles, which have shapes similar to those of the low-level jet (LLJ) wind profiles, are often observed during strong winds in the summer period at Mizuho Station, which is located at 70°42 S, 44°20 E in East Antarctica. The profiles may be classified according to the height of the maximum wind speed, z m , found below 30 m height. The behavior of z m and of conditions in the layer above z mare explained well by the normalized frequency, f N = Nz/U at 30 m, whose value can be used to predict the existence of a LLJ wind profile. Subsidence and inertial oscillations above z m are related closely to the height and time variations of z m. Thus, not only effects emanating upward from surface but also momentum and heat transported downward from above are significant for the evolution of z m.  相似文献   

16.
The characteristics of low-level jets (LLJ) observed at the “Centro de Investigacion de la Baja Atmósfera” (CIBA) site in Spain are analysed, focussing on the turbulence generated in the upper part of the jet, a feature that is still to be thoroughly understood. During the Stable Boundary Layer Experiment in Spain (SABLES) 1998, captive balloon soundings were taken intensively, and their analyses have highlighted the main characteristics of the jet’s wind and temperature structure, leading to a composite profile. There are indications that the turbulence has a minimum at the level of the wind maximum, with elevated turbulence in a layer at a height between two and three times that of the LLJ maximum, but no direct measurements of turbulence were available at these heights. In September 2001, a 100-m tower at the same site was re-instrumented to give turbulence measurements up to 96.6 m above ground level. All occurrences of LLJ below this height between September 2002 and June 2003 have been selected and significant turbulence above the LLJ has been found. Simulations with a single-column turbulence kinetic energy model have been made in order to further investigate the generation of elevated turbulence. The results correlate well with the measurements, showing that in the layer above the LLJ, where there is significant shear and weakly stable stratification, conditions are conducive to the development of turbulence.  相似文献   

17.
基于斐索干涉仪的直接探测多普勒测风激光雷达   总被引:5,自引:0,他引:5  
提出结合多光束斐索(Fizeau)干涉仪和CCD探测器的条纹图像技术,测量地球边界层下的三维风场的直接探测多普勒激光雷达技术.在分析Fizeau干涉仪的物理特性和光谱特性以及影响测量多普勒频移的因数和改进方法的基础上,提出一套切合实际的直接探测多普勒激光雷达系统参数.并利用该参数进行性能评估分析,模拟不同干涉仪参数对风速精度的影响,得出一个优化的干涉仪物理参数.模拟结果显示,系统可以获得小于1 m s-1的水平风速精度.这些分析,为建立实际的激光雷达系统提供设计依据.  相似文献   

18.
Observations from the Cloud-Aerosol Interaction and Precipitation Enhancement Experiment-Integrated Ground Observation Campaign (CAIPEEX-IGOC) provide a rare opportunity to investigate nocturnal atmospheric surface-layer processes and surface-layer turbulent characteristics associated with the low-level jet (LLJ). Here, an observational case study of the nocturnal boundary layer is presented during the peak monsoon season over Peninsular India using data collected over a single night representative of the synoptic conditions of the Indian summer monsoon. Datasets based on Doppler lidar and eddy-covariance are used for this purpose. The LLJ is found to generate nocturnal turbulence by introducing mechanical shear at higher levels within the boundary layer. Sporadic and intermittent turbulent events observed during this period are closely associated with large eddies at the scale of the height of the jet nose. Flux densities in the stable boundary layer are observed to become non-local under the influence of the LLJ. Different turbulence regimes are identified, along with transitions between turbulent periods and intermittency. Wavelet analysis is used to elucidate the presence of large-scale eddies and associated intermittency during nocturnal periods in the surface layer. Although the LLJ is a regional-scale phenomenon it has far reaching consequences with regard to surface-atmosphere exchange processes.  相似文献   

19.
The major features of the south-westerly low-level jet (LLJ) in the lower troposphere over Southeast China and its climatic impacts are investigated by using FNL reanalysis data and observational precipitation data. Results show that LLJ mainly occurs in spring and summer and the occurrence frequency of LLJ over southeast China has significant diurnal cycle, most LLJ occur in the nighttime (0200 LST and 0800 LST). The high nocturnal occurrence frequency of LLJ is mainly resulting from increased nocturnal ageostrophic wind. Research on the climatic impacts of large-scale conditions depicts that, the occurrence of LLJ in April mainly results from the northward shifting of western pacific subtropical high (WPSH), and the occurrence of LLJ in July results from the strengthening of detouring flow around Tibetan Plateau. Analysis of the climatic effects of LLJ on precipitation distribution in 3 rainy seasons over Southeast China indicates that the rainfall events with strong intensity correspond to strong LLJs. The LLJ affects the precipitation over Southeast China by transporting water vapor and triggering upward motion. Rainfall regions well corresponds to the regions of the moisture convergence and strong upward motion triggered by LLJ. Negative wind divergence anomalies at 850 hPa and positive wind divergence anomalies at 200 hPa over the Yangtze-Huaihe River Valley strengthen the upward motion over this region, which are conductive to produce more precipitation over the Yangtze-Huaihe River Valley.  相似文献   

20.
Atmospheric rivers(ARs)are an important component of the hydrological cycle linking moisture sources in lower latitudes to the Antarctic surface mass balance.We investigate AR signatures in the atmospheric vertical profiles at the Dronning Maud Land coast,East Antarctica,using regular and extra radiosonde measurements conducted during the Year of Polar Prediction Special Observing Period November 2018 to February 2019.Prominent AR events affecting the locations of Neumayer and Syowa cause a strong increase in specific humidity extending through the mid-troposphere and a strong low-level jet(LLJ).At Neumayer,the peak in the moisture inversion(up to 4 g kg^?1)is observed between 800 and 900 hPa,while the LLJ(up to 32 m s^?1)is concentrated below 900 hPa.At Syowa the increase in humidity is less pronounced and peaks near the surface,while there is a substantial increase in wind speed(up to 40 m s?1)between 825 and 925 hPa.Moisture transport(MT)within the vertical profile during the ARs attains a maximum of 100 g kg?1 m s?1 at both locations,and is captured by both ERA-Interim and ERA5 reanalysis data at Neumayer,but is strongly underestimated at Syowa.Composites of the enhanced MT events during 2009?19 show that these events represent an extreme state of the lower-tropospheric profile compared to its median values with respect to temperature,humidity,wind speed and,consequently,MT.High temporal-and vertical-resolution radiosonde observations are important for understanding the contribution of these rare events to the total MT towards Antarctica and improving their representation in models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号