首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
仇永炎 《气象学报》1979,37(3):13-21
利用1976~1977年冬季四个月北半球500mb资料,对北半球平均动能和涡动动能波谱的中期变化、动能转换率对平均动能的增衰和对波动增衰的作用进行了研究,得到一些初步结果。指出:北半球平均动能、涡动动能以及涡动动能和平均动能之间的转换率,有准两周的周期振动。涡动动能先于动能转换率一天达到峰值,而后再过两天平均动能达到峰值。在k=3波时,动能也存在准两周的周期振动,它是对涡动动能总值贡献最大的波动,同涡动动能总值具有同位相的振动。对动能转换率总值贡献最大的还是k=3波,其转换率具有同转换率总值同位相的准两周振动。 动能转换率对平均动能整个增长阶段的贡献,大于衰退阶段,在平均动能增长阶段,动能转换率近似于同平均动能变化率平衡。这意味着平均动能的增长,正压过程在起作用。 文中还研究了动能转换率对k=1~6波增衰的作用,结果表明:它对波动的增长不起作用,但对波动的衰退起到足够的贡献。 最后,对波动的增衰同平均动能和涡动动能的中期变化之间的联系进行了讨论。  相似文献   

2.
从准地转正压涡度方程,提出新的双时间尺度,首次导得了正压大气波动的4波准共振耦合方程,即广义Landau方程,利用新的守恒量,求得其甚低频周期解,其周期为一年左右,这可认为是实际大气中年际振荡的一种新的物理机制。并可求出4波准共振波矢。  相似文献   

3.
本文用13年夏半年(5—10月)月平均风场和两年逐日风场资料研究了200hPa南亚热带东风急流的气候学特征和中期振荡过程。研究表明,南亚夏季热带东风急流显著的非季节性变动和年际差异与低纬对流层高层大尺度环流变化和南亚夏季风活动密切相关,相对于多年平均而言,存在5类异常的东风急流。 各种分析表明,热带东风带存在三种主要的中期振荡。准50天周期振荡与夏季南亚对流层上部大尺度散度场的变化相关联,表现为十分显著的向南的位相传播。准50天和25天振荡均存在显著的年际变化。准50天周期振荡系统性不强的年份,准25天周期振荡是低纬行星波的主要振荡,在东风急流区除表现为系统性向西传播外也表现为向南的位相传播。准双周振荡在东风带一般向西传播。   相似文献   

4.
利用简单的土壤热传导方程建立模型,并结合小波变换方法,分析了2004年6月22日~8月18日金塔绿洲附近观测的戈壁土壤温度序列,重点关注地下10 cm的土壤温度变化.结果表明,在观测时段土壤温度除了有明显的日变化外,还存在周期为准4天和准两周的波动.利用滑动相关分析后发现,太阳向下短波辐射强度与土壤温度日变化能量存在显著的正相关,这与利用土壤热传导模型分析土壤日变化振幅年变化的相关研究的结论一致.太阳向下短波辐射强度与准4天周期波动实部分量在降水前后存在负相关关系.比较观测时段土壤温度准4天波动能量与同时期的天空温度,发现准4天波动可能与持续增强的云逆辐射有关.通过分析降水前后土壤温度、土壤含水量的变化,发现二者的日变化在降水后与降水前相比,振幅增大,位相前移.这一结果可以用土壤热扩散率在一定范围内随土壤含水量增大而增大得到解释.最后利用回归分析发现T10的准两周波动可能与更大范围的大气环流场异常有关.  相似文献   

5.
用三年冬半年15个月500毫巴逐日资料,计算写成谱函数形式的角动量涡动输送,研究其周期变化。输送总值(波数k=1—12的总和)盛行准两周的周期,逐年差别不大。k=3波输送值也盛行准两周周期,近于同输送总值同位相,而且负担了50%以上的输送总值。其他波数,k=2盛行26天左右周期,k=4盛行12天左右周期,但这些波的变化幅度比k=3波小得多。初步考察了准两周周期同寒潮的关系。 用解纬圈谱法,选例考察k=3波的槽脊走向和振幅,有同角动量输送准两周变化相应的变化。 最后采用功率谱和交叉谱的分析法,对1976—1977年角动量输送进行统计上处理,得到一些与定性分析相同的结果。  相似文献   

6.
本文利用1982年7—9月地面气压,850、500hPa高度和温度,广东地区测站的雨量等资料,进行功率谱、交叉谱、凝聚谱以及相关系数的计算。结果表明,这年夏季,印缅槽存在准三周的周期振荡,澳大利亚冷高压存在准两周的周期振荡,两者叠加的结果,与广东地区降水存在的准两周和准一周的振荡周期相吻合。研究还指出,这两个系统的周期变化比广东地区的降水超前1—3天。   相似文献   

7.
从简单海气耦合相互作用的非线性方程组出发,导出描述大气和海洋运动的无量纲准地转涡度方程.对准地转涡度方程引入双时间尺度后,在准共振条件K1+K2+K3 =0和ω1 +ω2 +ω3 =Δω下,求得大气和海洋波-波非线性相互作用的2组耦合方程,其中大气耦合方程中含有海洋强迫作用项.由这2个耦合方程组求得大气和海洋波动能量变化周期的近似解.结果表明:在考虑非线性效应的情况下,由波动共振引起的大气和海洋波动能量变化在中纬地区具有准20a的周期,说明非线性效应对海气耦合也具有调制作用,从而确定准20a气候年代际振荡形成的新机理.  相似文献   

8.
本文应用波数—频率空间的动能方程,采用ECMWF/WMO资料,讨论了1983年6月11日至8月13日64天热带对流层上层200百帕东风带纬向平均气流以及各种尺度波动动能的振荡机制。动能20天左右的周期振荡特别明显,纬向平均气流、2—7波动能都具有20天周期的振荡。1波动能似乎存在40天左右的周期振荡.另外,1波、4波及7波动能的准一周振荡也很显著。纬向平均气流动能20天左右的振荡主要是由于平均气流与波动相互作用的强弱变化引起的。波动动能的振荡原因是多方面的,有效位能的转换、侧边界的气压做功以及波动间的非线性作用都很重要。波动动能的高、低频振荡之间存在明显制约关系。在低频振荡出现峰值时,高频振荡的振幅最大;在低频振荡出现低值时,高频振荡的振幅最小。  相似文献   

9.
许有丰 《大气科学》1984,8(4):382-391
本文用两层准地转截谱模式,考虑基本气流、超长波和长波之间的非线性相互作用,得出了大气环流指数循环这种准周期振荡过程,其周期为8—15天.数值计算表明:非线性相互作用可以产生大气行星波螺旋状槽线倾斜的谐振、不同尺度波动的振幅谐振以及大型环流波数变化的准周期振荡.  相似文献   

10.
非绝热加热对中高纬大气低频振荡的调频作用   总被引:6,自引:2,他引:4  
用诊断方法和数值试验两种方法,研究了非绝热加热对中高纬大气低频振荡的调频作用,首先应用1979~1989年欧洲中心资料进行功率谱分析,得到:(1)夏季与冬季相比,波动的主周期有有缩短的趋势,(2)ElNino事件和LaNina事件期间,冬夏两季的波动主要周期分别有缩短和变长的趋势,然后,应用强迫耗散准地转正压涡度方程的全球谱模式,考虑三个行星波准共振,积分90d,得到:(1)三个行星波之间存在的很  相似文献   

11.
Long-lasting floods buffer the thermal regime of the Pampas   总被引:1,自引:0,他引:1  
The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape (~2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.  相似文献   

12.
Abstract

Three arrays of current‐meter moorings were deployed under landfast sea ice in southeast Hudson Bay for eight weeks in spring 1986. Spectral analysis shows low‐frequency signals with periods of 3 to 11 days. These signals are interpreted as being due to coastal‐trapped waves propagating cyclonically in Hudson Bay; their theoretical dispersion relations and corresponding modal structures are presented for winter stratification and are compared with observations. At a period of 3 days both the modified external Kelvin wave and higher mode continental shelf waves may be important in describing the observed low‐frequency variability, whereas at a period of 10 days the Kelvin wave appears to be the dominant mode. The generation mechanisms for these coastal trapped waves are also investigated. Two sources have been studied: the longshore atmospheric pressure gradient and the average atmospheric pressure over the ice cover in Hudson Bay. Coherence and phase analyses performed with time series of longshore current and atmospheric forcing data reveal that both the average atmospheric pressure and the longshore atmospheric pressure gradient are important in explaining the observed low‐frequency variability, without indicating which one is the most important.  相似文献   

13.
Considering the multiscale character of LFO (low-frequency oscillation) in the tropical atmosphere, the effects of SST on LFO in the tropical atmosphere are discussed by using an absolute ageostrophic, baroclinic model. Here, SST effects include sea surface heating and forcing of SST anomalies (SSTAs). Studies of the influences of sea surface heating on LFO frequency and stability show that sea surface heating can slow the speed of waves and lower their frequency when SST is comparatively low; while higher SST leads to unstable waves and less periods of LFO. Since the impact of a SSTA on ultra-long waves is more evident than that on kilometer-scale waves, long-wave approximation is used when we continue to study the effect of SSTAs. Results indicate that SSTAs can lead to a longer period of LFO, and make waves unstable. In other words, positive (negative) SSTAs can make waves decay (grow).  相似文献   

14.
Considering the multiscale character of LFO effects of SST on LFO in the tropical atmosphere (low-frequency oscillation) in the tropical atmosphere, the are discussed by using an absolute ageostrophic, baroclinic model. Here, SST effects include sea surface heating and forcing of SST anomalies (SSTAs). Studies of the influences of sea surface heating on LFO frequency and stability show that sea surface heating can slow the speed of waves and lower their frequency when SST is comparatively low; while higher SST leads to unstable waves and less periods of LFO. Since the impact of a SSTA on ultra-long waves is more evident than that on kilometer-scale waves, long-wave approximation is used when we continue to study the effect of SSTAs. Results indicate that SSTAs can lead to a longer period of LFO, and make waves unstable. In other words, positive (negative) SSTAs can make waves decay (grow).  相似文献   

15.
Variability of Atlantic Meridional Overturning Circulation in FGOALS-g2   总被引:3,自引:0,他引:3  
The variability of Atlantic Meridional Overturning Circulation (AMOC) in the pre-industrial control experiment of the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) was investigated using the model outputs with the most stable state in a 512-yr time window from the total 1500-yr period of the experiment. The period of AMOC in FGOALS-g2 is double peaked at 20 and 32 years according to the power spectrum, and 22 years according to an auto-correlation analysis, which shows very obvious decadal variability. Like many other coupled climate models, the decadal variability of AMOC in FGOALS-g2 is closely related to the convection that occurs in the Labrador Sea region. Deep convection in the Labrador Sea in FGOALS-g2 leads the AMOC maximum by 3-4 years. The contributions of thermal and haline effects to the variability of the convection in three different regions [the Labrador, Irminger and Greenland-Iceland- Norwegian (GIN) Seas] were analyzed for FGOALS-g2. The variability of convection in the Labrador and Irminger Seas is thermally dominant, while that in the colder GIN Seas can be mainly attributed to salinity changes due to the lower thermal expansion. By comparing the simulation results from FGOALS-g2 and 11 other models, it was found that AMOC variability can be attributed to salinity changes for longer periods (longer than 35 years) and to temperature changes for shorter periods.  相似文献   

16.
In this study, comparison of blocking climatological behaviors is presented for the two periods of 1959–1988 and 1989–2018 in a part of the Northern Hemisphere including the Atlantic Ocean, Europe and West Asia regions. Blocking events were detected using a modified blocking index that is based on vertically integrated potential vorticity. By applying this index, the characteristics of detected blocking events such as frequency, duration, intensity and area were determined and compared for both the periods.According to the results, on average, 16 and 15 blocking events per year were identified in the first and second periods, respectively. The trend analysis shows that the number of blocking events in the period 1959–1988 was significantly decreased, while it was slightly increased in the period 1989–2018. Blocking activity was most prevalent from the eastern Atlantic through Europe to West Asia, but this longitude band exhibits a relatively eastward shift in the second period. In addition, the seasonal distributions are similar to those found in previous studies with the higher occurrence of blocking events during winter and autumn seasons and the lowest frequency in summer, as well as long-lasting events and greater intensity and extension in winter than the summer time, especially in the second period. These seasonal variations of blocking frequency may be due to synoptic scale eddies and planetary waves which are more active and stronger in the colder seasons than the other seasons. On the other hand, a comparison between the two periods shows that the blocking events tend to be more frequent over West Asia especially during summer in recent years. Although discrepancies between the two periods are not significant, they could be partly due to the impacts of climate change in recent decades.  相似文献   

17.
Shin  Hyun-Geun  Khouider  Boualem 《Climate Dynamics》2021,56(11):3749-3773

The effect of equatorially trapped waves on the movement of tropical cyclones (TC) is studied numerically based on a two-dimensional barotropic model in a beta-plane approximation. According to recent studies, equatorially trapped waves contribute to the genesis of TCs. It is thus natural to assume that these waves affect also the movement of the TC. The effect of three types of equatorially trapped waves, namely Kelvin, Rossby, and n = 0 eastward inertio-Gravity (EIG) waves, on the TC trajectory is investigated with a focus on the sensitivity on some key physical parameters such as the wavenumber and wavespeed. Using a simple barotropic model forced by a prescribed baroclinic flow, the barotropic response to equatorially trapped waves is simulated for a period of 50 days, under various wave parameter configurations. This response is then used as a background flow where TC’s can evolve and propagate. TC-like flows are injected into this wavefield background at arbitrary times during the simulation, and the TC trajectories are tracked and recorded for 48h after the injection time. The resulting TC trajectory patterns with respect to the injection times and wave parameters appear to be stochastic and the mean paths and the associated standard deviations are calculated and reported here. The statistics are different for different wave types. Kelvin waves make shorter length of TC trajectories and small divergence of direction. On the contrary, Rossby waves cause rather dramatic changes in the TC path and yield longer trajectories. Meanwhile, TCs in EIG waves maintain fairly the same direction and typically have longer trajectories though less dramatic. A robustness test using a random forcing instead has also been conducted.

  相似文献   

18.
We have examined the climatic variance in a series of deep-water oxygen-isotope records which range in length from 0.3 to 130 million years and have temporal resolutions between one thousand and 10 million years. These variations in 18O are interpreted as a generalized index of temperature change in high latitudes. Over five frequency decades the relation between log (variance density) and log (frequency) is approximately linear with a slope between –1 and –1.5. This relationship is interpreted as a background continuum of the sort postulated by Mitchell (1976) in which the spectrum is built up by layers of variance representing contributions from various processes acting within the climate system on different time scales. Our observed continuum slope is much steeper than that visualized by Mitchell. Additional variance is distributed at periods longer than about 3 million years, where it probably originates from forcing by tectonic processes; and at periods between 20,000 and 100,000 years where the Milankovitch forcing operates. Between these two regions there is a clear variance minimum which we predict will appear in the spectrum of other geological variables that are controlled by climate.A broad-band concentration of variance at periods near 30 My rises well above the background. Another concentration occurs at frequencies too low to be estimated accurately from our data. We assume this is a climatic response to the 400 My cycle of continental fragmentation and assembly.  相似文献   

19.
Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901–1930, 1931–1960, 1961–1990 to 2001–2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991–2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981–1990, 1991–2000, and 2001–2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong spatiotemporal fluctuations in explanatory power of the different indices over all German counties and the three time periods. Over the 30 years, yield deviations were increasingly well correlated with heat and drought-related indices, with the number of days with maximum temperature above 25 °C during anthesis showing a sharp increase in explanatory power over entire Germany in the final 2001–2010 period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号