首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
鲁东南地区"2004.07"大暴雨中尺度分析与数值模拟   总被引:1,自引:0,他引:1  
孙田文  吴君  朱时良 《气象科学》2007,27(Z1):77-84
对2004年7月16、17日出现在临沂市的大暴雨过程的进行中尺度分析,应用 MM5v3.6 非静力中尺度模式,用美国 NCEP 再分析资料作初始场,采用双向三重嵌套模式,进行高分辨的数值模拟.分析揭示了这次大暴雨的天气尺度背景和中尺度系统的发生和发展的结构及演变,结果表明高低空急流的有利配合为暴雨过程提供环境条件,大暴雨出现在高空西风急流轴线出口区与低空西南风急流轴向出口区北侧之间;数值模拟看出在强降水产生时,雨区上空存在较强的中-β尺度系统,该系统有强而窄的垂直上升运动、上下垂直的辐散辐合结构,强烈的对流不稳定,在对流层低层还存在对称性不稳定.低空急流提供充沛的水汽,并通过强而窄的上升运动向高层输送.  相似文献   

2.
对2004年7月16、17日出现在临沂市的大暴雨过程的进行中尺度分析,应用MM5v3.6非静力中尺度模式,用美国NCEP再分析资料作初始场,采用双向三重嵌套模式,进行高分辨的数值模拟。分析揭示了这次大暴雨的天气尺度背景和中尺度系统的发生和发展的结构及演变,结果表明:高低空急流的有利配合为暴雨过程提供环境条件,大暴雨出现在高空西风急流轴线出口区与低空西南风急流轴向出口区北侧之间;数值模拟看出:在强降水产生时,雨区上空存在较强的中-β尺度系统,该系统有强而窄的垂直上升运动、上下垂直的辐散辐合结构,强烈的对流不稳定,在对流层低层还存在对称性不稳定。低空急流提供充沛的水汽,并通过强而窄的上升运动向高层输送。  相似文献   

3.
隆霄  潘维玉  邱崇践  赵建华 《高原气象》2009,28(6):1335-1347
利用常规观测资料\, 卫星观测的高时空分辨率TBB资料以及客观分析资料, 对2002年6月22~23日(“02.6”)一次非典型的梅雨锋暴雨过程进行了天气分析。在此基础上, 利用中尺度数值模式MM5对此次梅雨锋暴雨过程进行了数值模拟, 并分析了暴雨中尺度系统的结构特征。结果表明: (1)天气分析显示, “02.6”梅雨锋暴雨过程与α中尺度低涡的东移发展和对流层低层的两支低空急流的增强发展有关。对流层低层700 hPa为一个缓慢东移与南压的东北西南向冷式切变线, 暖式切变线不太明显, 这与通常的江淮切变线梅雨锋暴雨不同。对流层500 hPa的副热带高压非常强, 高层200 hPa对流层高层的反气旋环流非常强并与高空急流相伴, 南亚高压中心位于我国江南地区。(2)TBB资料分析表明, 此次暴雨过程产生与多个β中尺度系统合并发展成α中尺度系统以及此后从α中尺度系统中不断分裂出β中尺度系统发展演变密切相关; 强中尺度对流系统主要在中尺度低涡冷、 暖切变线的的南侧发生和发展, 并不是在中尺度低涡的冷暖切变线上发展。(3)垂直结构分析显示: 在中尺度系统开始发展阶段, 中尺度系统具有强的垂直于剖面的风分量切变、 低空急流核以及高空强辐散低空强辐合, 这有利于中尺度系统的发展; 当中尺度低涡发展到相对成熟的阶段, 其后部不断分裂出中小尺度系统, 对流层低层的θe具有明显暖心结构, 由于气块绝热上升冷却效应比对流潜热释放作用强, 导致在800~600 hPa层上 θe比环境的低, 加之在强上升运动的顶部两侧的下沉补偿气流也比较弱, 这不利于中尺度低涡的维持。  相似文献   

4.
利用T213资料和Grapes meso中尺度非静力模式对2006年9月20—21日发生在陕北中部黄河沿岸的一次强对流过程进行数值模拟与诊断分析。结果表明:在有利的天气尺度环流背景下,中-α尺度低涡产生的中-β尺度云团是本次强对流天气的直接影响系统。这次强对流天气的发展过程是由高层辐散激发正涡度发展,从而形成深厚的中尺度低涡环流,是一次比较特殊的河套低涡型强对流天气。高、低空急流耦合的不同方式决定了强对流天气表现形式的转变。强对流发生前,河套地区已聚集了大量不稳定能量并有能量锋配合。模式能够比较真实地再现中尺度系统的整个发展过程和强对流天气分布,分析结果可为中尺度强对流预报提供诊断依据。  相似文献   

5.
"99·6"梅雨锋暴雨低涡切变线的数值模拟和分析   总被引:20,自引:1,他引:19  
隆霄  程麟生 《大气科学》2004,28(3):342-356
在天气分析的基础上,利用非静力中尺度模式MM5和四维资料同化逼进方法及双向三重嵌套网格技术,对1999年6月23~25日(简称"99·6")发生在长江中下游地区的梅雨锋暴雨过程进行了数值模拟.结果表明:模拟结果与观测结果的比较指出,高分辨数值模式MM5可以成功地模拟梅雨锋中尺度低涡切变线的发生和发展;模拟结果显示,在α中尺度低涡切变线发展过程中,低层强的西南急流和东北气流增强了低层的辐合;而高空的西风急流和东风急流则增强了高空的辐散;正是由于这种从高空到低空环流的配置,才促进了α中尺度低涡不断发展;模拟低涡切变线不同部位的垂直环流和物理量场表明,"99·6"梅雨锋低涡切变线的结构非常复杂:在梅雨锋的发展期,暖锋附近的垂直上升运动最强,低涡中心次之,冷锋附近最弱.模拟结果也表明,由于下垫面特征的不同,中国和日本的梅雨锋暖锋附近环流结构有较大的区别;模拟结果显示,在α中尺度低涡发展过程中,不断有扰动在低涡前部发展,激发并分裂出一系列的β中尺度系统,β中尺度系统运动剧烈,但由于其低层辐合强于中空辐散,所以当它远离母体时会很快衰减.  相似文献   

6.
黄河中游一次MCC致洪暴雨综合诊断分析   总被引:2,自引:0,他引:2       下载免费PDF全文
井宇  井喜  王瑞  屠妮妮  余兴  杨新 《气象》2008,34(3):56-62
为了提高对MCC致洪暴雨的预报和预警能力,利用卫星云图、MICAPS系统提供的资料以及多普勒雷达资料,对2006年7月2日黄河中游发生的一次中尺度对流复合体(MCC)和黄河中游暴雨天气过程进行了大尺度环境场和物理量的诊断分析以及三维流场结构分析.结果表明:MCC是造成暴雨的直接影响系统;对流层中低层深厚暖湿切变辐合的形成,配合对流层高层急流分支出口处生成中-α尺度强辐散、对流层低层华北冷空气南下倒灌锋生产生的动力抬升作用,形成有利于MCC生成发展的环流背景;MCC发生在高能、弱对流不稳定区;700hPa西南低空急流、850hPa分支南风气流为MCC的生成发展提供了充足的水汽和能量;涡度场和散度场的耦合、强烈上升运动的形成,成为MCC发生发展和维持的动力机制;多普勒雷达径向速度场显示,东南低空急流、配合西南低空急流的生成和稳定,西南低空急流左侧有气旋性辐合的维持、配合对流层中高层径向强辐散,构成MCC致洪暴雨的三维流场结构.  相似文献   

7.
一次强飑线的成因及维持和加强机制分析   总被引:18,自引:6,他引:18       下载免费PDF全文
利用常规观测资料、多普勒天气雷达、自动气象站等资料对2004年7月12日影响上海的一次较长生命史的强飑线过程进行了综合分析,对这次强对流天气发生、发展、强度以及移动和传播的分析结果表明:副热带高压从华南沿海稳定地加强西伸,西风槽缓慢东移,导致华东地区850~500 hPa形成深厚西南急流,急流的加强促使低层锋生,配合K指数高能锋区的不稳定层结,大大增强了强对流天气发生的可能性;地面锋生作用和低层辐合、高层辐散造成的强抬升作用是主要的触发机制;较强的环境风垂直切变和雷暴内部上升气流与下沉气流的正反馈作用是飑线系统维持较长时间的原因,中尺度对流系统(MCS)多个雷暴单体间的相互作用使得南侧的雷暴单体加强、移动方向发生偏转。  相似文献   

8.
山东半岛一次强暴雨的分析和数值模拟   总被引:4,自引:3,他引:1  
利用T213资料、常规观测资料和多普勒雷达资料,对2004年8月5日发生在山东半岛东部的一次大暴雨过程进行了数值模拟和分析,在模拟结果比较成功的基础上,利用细网格模拟资料重点分析了高、低空急流和850 hPa低压与暴雨的关系,以及山东半岛地形的动力作用。结果表明:暴雨强回波从南向北传播时强度逐渐增强,反映了中尺度对流系统的结构和发展;对流云团首先在低空急流中心左前方生成,与副热带高压边缘的西南暖湿气流有关,中尺度高空急流是伴随对流由强高空出流而形成,高、低空急流的耦合作用有利于强对流天气的维持和发展;在副热带高压西侧边界层激发出一个中β尺度低压,该低压形成后与暴雨区相伴移动,且移动路径与山东半岛东部地形分布有关,山东半岛地形对西南暖湿气流阻挡和绕流的动力作用是导致威海附近强暴雨的原因之一。  相似文献   

9.
张晓东 《气象科技》2010,38(5):550-557
利用NCEP再分析资料和天津多普勒雷达等资料,对2008年7月14—15日发生在河北唐山及天津一带的暴雨过程进行了分析,并通过MM5数值模拟阐述了雷达资料分析的正确性。结果表明:此次大暴雨发生在中低纬天气系统相互作用的背景下,700hPa高空槽、850hPa低涡及地面中尺度辐合线是引发此次暴雨主要影响系统;低空急流是暴雨主要的水汽来源;低空辐合高层辐散、锋面抬升是暴雨系统发展的动力机制;对流层中部冷空气活动引起的西南低空急流脉动与暴雨的增幅有密切关系;涡旋状和带状回波是主要降水回波。  相似文献   

10.
利用贵州国家观测站和区域自动站数据,结合NCEP再分析资料、FY-2G卫星云图及多普勒雷达资料,对2020年6月23~24日在贵州南部地区发生的梅雨锋西段持续特大暴雨过程进行诊断分析。结果表明:(1)此次持续特大暴雨过程是在南亚高压控制、西太平洋副热带高压北界稳定维持在华南北部背景下,短波槽东传及中低层切变和梅雨锋共同影响的结果;(2)来自孟加拉湾的西南暖湿气流与副高西侧的偏南气流在贵州中东部到长江流域一带交汇,促使低空急流建立,为持续性暴雨天气提供充足的水汽输送;(3)高空辐散、中低层切变线南侧与低空急流北侧的正垂直螺旋度为中尺度涡旋迅速发展和水汽辐合抬升凝结提供了动力条件;(4)高原槽引导弱冷空气南下有利于梅雨锋锋生,午后至傍晚生成若干γ、β尺度的中尺度对流系统导致了此次降水过程的发生;(5)暴雨过程中存在明显“列车效应”,贵州南部受对流系统叠加影响形成较强降水。   相似文献   

11.
一次东北冷涡不同阶段强对流天气特征对比分析   总被引:3,自引:0,他引:3  
利用NCAR/NCEP再分析(1?×1?)资料、区域自动站观测、FY-2D/2E卫星观测和GPS/MET水汽监测等资料,对2012年6月7-18日长春地区发生在同一东北冷涡系统不同演变阶段的3次强对流天气进行对比诊断分析。结果表明:在冷涡形成期,高低空急流耦合产生的次级环流上升支,触发锋前不稳定能量释放,导致中β尺度孤立深厚湿对流系统出现;在冷涡发展期,对流层高层干冷空气向对流层中下层侵入,形成高空露点锋,触发有组织的中α尺度对流系统;在冷涡消亡期,低涡减弱为高空槽并快速东移,其后部冷空气置于低层大范围暖湿空气之上,地面中尺度辐合触发不稳定能量释放,形成中β尺度对流系统。  相似文献   

12.
利用中国科学院大气物理研究所LASG研制的AREM中尺度暴雨数值预报模式, 对2003年6月29—30日发生在淮河流域的一次大暴雨过程进行了数值模拟分析。结果表明:随着西太平洋副热带高压加强, 低空急流迅速向北推进, 加强了其北侧的风速梯度和气旋性切变, 使涡度场发生了强烈变化, 强正涡度柱的发展导致了低层β-中尺度低压和气旋的新生; 而对流层中高层β-中尺度高压的发展所引起的地转偏差使得β-中尺度高压附近的风场发生明显变化, 并导致β-中尺度强辐散中心强烈发展, 最终造成强烈的上升运动。强上升运动出现在低层θse强锋区的南侧。  相似文献   

13.
2002年6月8日佛坪突发性特大暴雨天气过程分析   总被引:12,自引:3,他引:12       下载免费PDF全文
对2002年6月8日发生在陕西佛坪的一次特大暴雨过程进行了综合分析, 结果表明:500 hPa槽前的中尺度切变线是直接影响暴雨产生的中-α尺度系统; 位于台湾岛以东洋面台风“浣熊”外围的低空偏东急流从海上一直延伸到陕西, 成为特大暴雨的主要水汽来源; 华北高脊稳定, 使得高原低值系统移速减慢、停滞, 有利于特大暴雨的形成; 急流次级环流为特大暴雨提供了持续强劲的上升运动; 在地面中尺度风场中, 两个中-β尺度气旋稳定少动, 与地面降水强中心相对应; 在红外云图上, 中-β尺度对流云团呈椭圆状, 云顶亮温TBB在-60 ℃~-70 ℃之间。中-β尺度对流云团的强弱变化与次级环流的强弱有直接的关系。  相似文献   

14.
一次梅雨期暴雨与中层锋生、β中尺度小高压的关系   总被引:2,自引:2,他引:0  
利用实况资料和中尺度WRF模式对2007年7月9—10日一次江淮梅雨期暴雨过程进行了数值模拟与诊断分析。结果表明,此次过程中,在雨带的北部有β中尺度小高压的维持及破坏过程。在小高压维持时,暴雨相对较小,被破坏时,降水加强,同时中层有明显的锋生过程。β中尺度高压产生与消失的原因与高空急流的非地转质量调整有关。小高压存在时有利于梅雨锋切变线的维持,但其南部的偏东气流,没有为暴雨提供较强的辐合场,且阻挡了北方的冷空气南下,因此不利于强降水的产生。当其减弱消失时,使得北方的动量直接指向暴雨区,有利于辐合上升运动的加强,从而强降水发展加强。最强锋生、降水以及有效位能出现在小高压被破坏后。利用锋生函数计算得出,暴雨时,中层的水平辐散项与变形项对锋生的影响明显。通过湿位涡的计算发现其对低层锋生和降水的预报有着一定的指示和预报意义。  相似文献   

15.
2011年7月29日山西大暴雨过程的多尺度特征   总被引:1,自引:0,他引:1  
利用1°×1°的NCEP再分析资料、红外辐射亮温(TBB)、多普勒雷达和气柱水汽总量等资料,对2011年7月28-29日发生在山西境内的区域性暴雨进行多尺度特征分析。结果表明:(1)乌拉尔山阻高崩溃,西风槽东移、副高进退是此次暴雨发生的环流特征;(2)850 hPa低涡切变和700 hPa暖式切变线及地面冷锋是暴雨发生的中α尺度触发系统;(3)〉30 dBZ的雷达回波呈南北向位于地面冷锋与700 hPa切变线之间,雷达回波随地面冷锋和700 hPa切变线的东移而东移;(4)低空低涡切变受500 hPa强盛西南气流的引导向东北移动,暴雨落区始终与低涡切变相伴随;(5)暴雨过程山西境内共有9个中β尺度对流云团活动,山西西南部的暴雨主要由5个中β尺度对流云团的相继移入并在自动站极大风速风场切变线附近触发对流发展所致;山西东南部的大暴雨则是3个中β尺度对流云团合并发展的结果,中γ尺度气旋是导致局地大暴雨发生的直接影响系统;(6)暴雨发生在气柱水汽总量空间分布图中水汽锋的南部和东部及靠近气柱水汽总量的大值区一侧,水汽锋的形成比降水开始提前17 h,比暴雨发生提前24 h以上,对暴雨的短期、短时预报有指示意义。  相似文献   

16.
2021年7月16—17日,在大尺度鞍型背景场中长江中下游地区生成了准静止的β中尺度低涡系统,造成苏皖地区出现局地特大暴雨及雷暴大风天气。欧洲中心(EC)控制预报对低涡位置的描述较实况明显偏北,由此在降水预报中也呈现出较大偏差,给预报决策带来较大误导。采用EC控制和集合预报产品,并基于“预报挑战度(MFC)”和“可预报性演变指数(PHDX)”等客观方法对低涡及降水预报不确定性进行分析,并在此基础上探讨模式偏差成因,得到以下结论:(1)对流层低层低涡东侧西南气流和东南气流的辐合以及低空急流的水平涡度输送是低涡发展的主要动力因素,而低涡东侧和南侧降水的潜热释放则构成低涡发展的热力因素;(2)EC控制预报不同起报时次均出现低涡位置偏北及雨带预报偏北现象,其集合预报产品离散度无法覆盖实况降水,揭示了此次过程的低可预报性,MFC和PHDX则能够客观指示此次过程低可预报性;(3)前期模式对低涡南侧西南气流南风分量预报偏大及对东侧辐合区刻画偏北造成前期东段降水偏北,而后在潜热释放、低空急流与低涡正反馈机制影响下,偏北的降水区造成低涡进一步预报偏北,最终导致整个时段预报较观测呈现巨大差异。   相似文献   

17.
一次西南低涡东移引发长江中下游暴雨的诊断研究   总被引:1,自引:0,他引:1  
刘晓波  储海 《气象》2015,41(7):825-832
利用常规观测资料和NECP再分析资料,对2013年6月6—7日西南低涡东移加强发展造成长江中下游大暴雨过程进行了诊断分析,重点探讨了西南低涡东移和发展维持的物理机制以及最强降水的变化特征。结果表明,沿着700 hPa高空切变线东移的西南低涡是造成此次长江中下游地区暴雨的直接影响系统,西南低涡沿着700 hPa切变线东移发展,深厚阶段正涡度柱伸展到400 hPa高度,自下而上呈近垂直结构。西南低涡附近低层辐合与高层辐散的大尺度环境条件、西南低涡与西南低空急流耦合发展动力结构、低空暖平流和高空槽前正涡度平流输送等条件是导致西南低涡东移到长江中下游后加强发展的主要因子。与西南低涡相伴随的强降雨区主要位于低涡南部3个纬距以内,该处的西南季风和副高西南侧东南气流两支水汽输送的汇合为暴雨发生提供了充沛的水汽和对流不稳定能量,而对流层中低层携带的冷空气侵入低层低涡的后部,不仅加强了低涡的斜压性,也促进了上冷下暖不稳定层结的产生和发展,为强降水的发生提供了不稳定对流触发条件。  相似文献   

18.
利用NCEP再分析资料、常规观测资料和WRF中尺度数值模式,对2010年6月19—20日江西特大暴雨过程进行数值模拟及诊断分析。结果表明,此次过程中,中-β尺度小高压的维持和破坏对雨带的生成与发展有显著的影响。由于小高压的存在,阻挡了北方弱冷空气南下,不利于强降水发生。当小高压减弱消失时,冷、暖气流的交汇引发强烈辐合上升运动,从而触发强降水。中-β尺度小高压的产生维持、消亡与高空急流的非地转质量调整有关。中尺度低涡的稳定维持、弱冷空气南下、高空急流动量南扩、低层西南急流维持等多个因素共同导致了大暴雨的产生。  相似文献   

19.
A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dimension Data Assimilation). The analysis shows that seven weak small mesoscale vortexes of tens of kilometers, correspondent to surface low trough or mesoscale centers, in the planetary boundary layer (PBL) in the mei-yu front were heavily responsible for the heavy rainfall. Sometimes, several weak small-scale vortexes in the PBL could form a vortex group, some of which would weaken locally, and some would develop to be a meso-α-scale low vortex through combination. The initial dynamical triggering mechanism was related to two strong currents: one was the northeast flow in the PBL at the rear of the mei-yu front, the vortexes occurred exactly at the side of the northeast flow; and the other was the strong southwest low-level jet (LLJ) in front of the Mei-yu front, which moved to the upper of the vortexes. Consequently, there were notable horizontal and vertical wind shears to form positive vorticity in the center of the southwest LLJ. The development of mesoscale convergence in the PBL and divergence above, as well as the vertical positive vorticity column, were related to the small wind column above the nose-shaped velocity contours of the northeast flow embedding southwestward in the PBL, which intensified the horizontal wind shear and the positive vorticity column above the vortexes, baroclinicity and instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号