首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
江志红  陈威霖  宋洁 《大气科学》2009,33(1):109-120
利用中国区域550个站点1961~2000年日降水量资料, 考察参与政府间气候变化委员会(IPCC)第四次评估报告的7个新一代全球模式及多模式集合对现代气候情景下(20C3M)5个极端降水指数的模拟能力, 同时进行中国区域未来不同排放情形下极端降水事件变化的预估, 结果表明: 最新全球模式能较好地模拟出极端降水指数气候场的空间分布及其中国区域的线性趋势, 且模式集合模拟能力优于大部分单个模式, 但在青藏高原东侧、 高原南部存在虚假的极端降水高值区, 模拟的东部季风区的极端降水强度系统性偏低, 区域平均序列年际变率的模拟能力也较低。中国地区21世纪与降水有关的事件都有趋于极端化的趋势, 极端降水强度可能增强, 干旱也将加重, 且变化幅度与排放强度成正比。  相似文献   

2.
基于MIROC/WRF嵌套模式的中国气候变化预估   总被引:3,自引:2,他引:1  
开展了基于全球模式MIROC嵌套区域气候模式WRF的动力降尺度模拟试验,预估了IPCC SRES A1B排放情景下中国21世纪中期(2041~2060年)和末期(2081~2100年)的气候变化。21世纪中期:全国大部分区域年平均地表气温(下文简称气温)上升2~4°C,升温幅度较大的是在北方地区和青藏高原。年平均降水在华南和东北大部基本没有增加,甚至有所减少,在西北及长江和黄河的中下游地区有所增加。气温的标准差总体上是北方大于南方,全国的大值区位于青藏高原,表明北方地区和青藏高原的气温年际变率较大。降水年际变率较大的是华北和西北地区。21世纪末期:全国大部分区域升温在4°C以上,升温幅度较大的依然是北方地区和青藏高原。其中,青藏高原大部升温超过7°C。从季节来看,春季和冬季升温要多于夏季和秋季。降水整体上是增加的,在南方部分地区有所减少,特别是在西南地区和青藏高原的南部。气温年际变率依然是北方大于南方,全国的大值区同样位于青藏高原。华北和西北还是降水年际变率较大的地区。  相似文献   

3.
全球气候模式对中国降水分布时空特征的评估和预估   总被引:8,自引:0,他引:8  
使用观测和多模式集合的降水资料,评估全球气候模式对中国降水时空分布特征的模拟能力,并给出21世纪的预估。结果表明:全球气候模式在一定程度上能够再现中国地区降水的分布型,也能模拟出降水的区域性差异,对年降水10年、20年尺度的周期变化模拟效果较好。21世纪SRES A1B情景下中国年及夏季降水主要模态以全国一致型为主,2045年前后由少雨型转为多雨型;冬季降水为少雨型与多雨型交替出现。  相似文献   

4.
新疆地区21世纪气候变化分析   总被引:10,自引:2,他引:8  
利用参与IPCC AR4的多个气候模式的模拟结果,分析了中国新疆地区21世纪气候变化情景.结果表明,在三种不同温室气体排放情景下,21世纪新疆地区升温明显、降水将进一步增加.到21世纪末(2091-2099年),新疆地区SRESA1B、SRESA2、SRESB1情景下年平均温度将分别增加4.2℃、5.0℃、2.7℃.SRESA1B、SRESA2情景下,在不同时期内,夏季、冬季温度上升幅度大于春季、秋季.在21世纪前半叶,新疆地区平均降水量增加幅度不明显,到21世纪末降水增加10%以上.整个21世纪,新疆地区在SRES情景下降水增加趋势分别为10%/100a、12%/100a、9%/100a.就各个季节的降水变化来看,模拟结果表明冬季降水增加幅度最大,春季次之;在同一时期内冬季降水增加幅度是其他季节的几倍.就区域来说,新疆中部地区21世纪降水增加幅度最大,但是温度增加幅度小于周围地区;北部地区温度、降水都将呈现明显的增加;新疆南部地区温度将明显升高.但是降水增加幅度不大.全球气候模式对较小区域尺度的模拟存在较大的不确定性,还需做深入的分析和研究.  相似文献   

5.
中国20年一遇气温和降水极值变化的高分辨率模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
基于25 km高分辨率区域气候模式(RegCM3)嵌套MIROC3.2_hires全球气候模式结果,进行IPCC SRES A1B情景下21世纪气候变化的模拟,分析中国区域未来气温和降水极值重现期的变化。首先检验模式对当代(1981—2000年)极端事件重现期的模拟能力,结果表明,模式能够较好地再现中国地区20年一遇极端事件的基本分布型,但所模拟的数值与观测相比还有一定偏差,特别是在极端降水方面。21世纪中期(2041—2060年)和末期(2081—2100年)20年一遇的高温极值在整个区域内均将升高,东北地区增幅最大;低温极值将增大,中心位于内蒙古、新疆及青藏高原南麓;降水极值也将普遍增大。气温和降水极值在21世纪末期的增加幅度均比中期要大。在未来全球变暖背景下,中国地区极端高温事件将明显增多,面积增大;极端低温事件将大幅度减少,面积减少;强降水事件也将增多,面积不断扩大。  相似文献   

6.
全球气候模式对宁夏区域未来气候变化的情景模拟分析   总被引:13,自引:0,他引:13  
利用多个全球气候模式(GCM)的情景模拟结果分析只考虑温室气体效应的IS92a GG情景和同时考虑温室气体效应和硫化物气溶胶辐射效应的IS92aGS情景以及SRESA2、B2情景下宁夏区域21世纪地面气温和降水量的可能变化,并进行不确定性分析。气候基准时段(1961~1990年)模拟结果与观测资料的对比分析表明,GCM对宁夏气候具有一定的模拟能力;整体上讲,GCM对地面气温的模拟值偏低,对降水量的模拟值偏高,其中ECHAM4和HadCM3对宁夏基准时段地面气温和降水量的模拟结果与观测比较接近。各GCM模拟值的平均结果显示,4种温室气体排放情景下21世纪宁夏区域气温持续升高,至21世纪末宁夏升温幅度可达4~6℃,与全国平均的增温幅度大致相当;与升温趋势相应的是降水量的增加,但降水变化呈现出很大的波动性,至21世纪末宁夏的降水变化幅度可达10%~40%。各个GCM模拟的宁夏气候变化的总趋势是一致的,但各模式在不同情景下模拟结果的差异很大,存在较大的不确定性。  相似文献   

7.
CMIP5模式对中国地区气温模拟能力评估与预估   总被引:5,自引:0,他引:5  
利用第五次国际耦合模式比较计划(CMIP5)中29个气候模式的气温模拟结果,评估了各模式对中国地区年平均气温的模拟能力,对未来不同典型浓度路径(RCPs)下中国地区气温的可能变化给出了预估。结果表明:各模式能较好地模拟过去100多年中国地区增温趋势和年平均气温的空间分布,从模式间标准差来看,各模式对中国中部、南部气温模拟具有较高的一致性。利用相对均方根误差分析了各模式的模拟能力,对于多时间尺度(月、年)气温的气候平均态,有7个模式表现良好,高于中等水平,5个模式的模拟能力低于中等水平,模式集合平均值的模拟效果优于大多数单个模式。根据29个模式的评估结果,使用模拟性能相对较好的模式分析了未来不同排放情景下中国地区气温变化,21世纪前期,不同排放情景之间的预估结果差别较小,21世纪中期各情景之间的差别逐渐增大,到21世纪后期,3种排放情景的升温差别明显增大。  相似文献   

8.
利用5个全球气候模式和中国东北地区162个站点地面温度实测资料,评估全球气候模式和多模式集合平均对中国东北地区地面温度的模拟能力,并对SRES B1、A1B和A2排放情景下,中国东北地区未来地面温度变化进行预估。结果表明:全球气候模式能够较好地再现了东北地区地面温度的年变化和空间分布特征,但存在系统性冷偏差,模式对夏季地面温度模拟偏低1.16 ℃,优于冬季。预估结果表明,3种排放情景下21世纪中期和末期东北地区地面温度均将升高,末期增幅高于中期,冬季增幅高于其他季节, SRES A2排放情景下增幅最大,B1排放情景下最小;增温幅度自南向北逐渐增大,增温最显著地区位于黑龙江小兴安岭;21世纪末期3种情景下中国东北地区年平均地面温度将分别升高2.39 ℃(SRES B1)、3.62 ℃(SRES A1B)和4.43 ℃(SRES A2)。  相似文献   

9.
中国降水季节性的预估   总被引:2,自引:1,他引:1  
姚世博  姜大膀  范广洲 《大气科学》2018,42(6):1378-1392
本文使用国际耦合模式比较计划第五阶段(CMIP5)中共46个全球气候模式的数值试验数据,通过评估择优选取了14个模式来预估21世纪中国各季节降水百分率及其变率。结果表明,模式集合平均能够较好地模拟各季节降水百分率及其变率,但模式与观测间、各模式间都存在一定不同,空间上西部差异较大,季节上夏季差异明显。21世纪中国降水百分率整体表现为夏季大冬季小,但存在区域性,如华南春季降水百分率大于夏季。与1986~2004年相比,中国降水百分率整体表现为在夏季显著减少,冬春季显著增加,但高原则与之相反。此外,模式对于长江中下游地区降水百分率的预估存在较大不确定性。RCP8.5情景下降水季节性变幅要大于RCP4.5情景。降水季节性的变率在四季均表现出一定的增加趋势,但21世纪早、中和末期与1986~2004年相比并无显著差异(置信水平为95%)。  相似文献   

10.
王晓欣  姜大膀  郎咸梅 《大气科学》2019,43(5):1158-1170
本文使用国际耦合模式比较计划第五阶段(CMIP5)中39个全球气候模式的试验数据,预估了相对于工业革命前期全球1.5℃升温背景下中国气温和降水变化。根据多模式中位数预估结果,在不同典型浓度路径(RCPs)情景下,相对于工业革命前期全球1.5℃升温分别发生在2034年(RCP2.6)、2033年(RCP4.5)和2029年(RCP8.5)。全球升温1.5℃时,中国年和季节气温平均上升1.8℃和1.6~2.1℃,其中冬季最强。增温总体上由南向北加强,青藏高原为高值中心。年和各季节增温均超过其自然内部变率,区域平均的信噪比分别为3.4和1.6~2.7。年和季节降水整体上在中国北方增加、华南减少;区域平均的年降水增加1.4%,季节降水增加0.1%~5.1%,冬季增幅最大。年和季节降水变化要远小于其自然内部变率,区域平均的信噪比仅为0.1和0.01~0.2。总体上,模式对气温预估的不确定性较小,对降水的偏大,其中对季节尺度预估的不确定性要高于年平均结果。  相似文献   

11.
Regional climate change in China under the IPCC A2 Scenario, was simulated for continuous 10-yr period by the MM5V3, using the output of an IPCC A2 run from CISRO Mark 3 climate system model as lateral and surface boundary conditions. The regional climate change of surface air temperature, precipitation, and circulation were analyzed. The results showed that (1) the distribution of mean circulation, surface air temperature, and precipitation was reproduced by the MM5V3. The regional climate model was capable to improve the regional climate simulation driven by GCM. (2) The climate change simulation under the IPCC A2 Scenario indicated that the surface air temperature in China would increase in the future, with a stronger trend in winter and the increasing magnitude from the south to the north. The precipitation distribution would appear a distinct change as well. Annual mean precipitation would remarkably increase in Northeast China, Yangtze and Huaihe River Valley, and the south area of the valley. Meanwhile, rainfall would show a decreasing trend in partial areas of North China, and many regions of Southwest and Northwest China.  相似文献   

12.
中国21世纪气候变化的情景模拟分析   总被引:33,自引:3,他引:33  
利用HadCM2和ECHAM4气候模式比较分析了温室气体排放综合效果相当于CO2浓度逐年递增1%情景下中国区域21世纪地面气温和降水量的变化趋势。结果表明:在温室气体渐进递增情景下,至21世纪末期,相对于1961-1990年的气候基准值,全国地面平均气温增幅可达5—6℃。与地面气温的变化相比,降水量的波动幅度较大,但全国范围内降水量变化的总趋势也是增加的。中国区域地面气温和降水量变化的地理分布显示:降水量的增加主要集中在南方区域,HadCM2预测21世纪末期降水增加可达0.9mm/d,ECHAM4预测可达0.6mm/d;ECHAM4模式模拟的气温增幅比HadCM2高,尤其是在冬季及中国北方和青藏高原地区,而HadCM2模式模拟的降水量的增加较大,但两个气候模式模拟的地面气温和降水量变化的总趋势大体一致。  相似文献   

13.
利用国家气候中心完成的RegCM4区域气候模式在RCP4.5和RCP8.5两种排放路径下的气候变化动力降尺度试验结果,在检验模式对基准期(1986—2005年)气温和降水模拟能力基础上,进行华北区域21世纪气候变化预估分析。结果表明:RegCM4对华北区域基准期气温和降水的模拟能力较好。未来21世纪,两种情景下华北区域气温、降水、持续干期(consecutive dry days, CDD)和强降水量(R95p)变化逐渐增大,但变化幅度在高排放的RCP8.5情景下更为显著,其中近期(2021—2035年)、中期(2046—2065年)、远期(2080—2098年)RCP8.5情景下年平均气温分别升高1.77、3.44、5.82℃,年平均降水分别增加8.1%、14%、19.3%,CDD分别减少3、3、12 d, R95p分别增加30.8%、41.9%、69.8%。空间上,未来21世纪华北区域内年、冬季、夏季平均气温将一致升高,夏季升温幅度最大;年、冬季、夏季平均降水整体以增加为主,冬季降水增加幅度最大;CDD以减少为主,但近期和中期在山西和京津冀有所增加,而R95p以增加为主,表明21世纪华北区域干旱事件逐渐减少、极端降水事件不断增加。  相似文献   

14.
A simulation of climate change trends over North China in the past 50 years and future 30 years was performed with the actual greenhouse gas concentration and IPCC SRES B2 scenario concentration by IAP/LASG GOALS 4.0 (Global Ocean-Atmosphere-Land system coupled model), developed by the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). In order to validate the model, the modern climate during 1951-2000 was first simulated by the GOALS model with the actual greenhouse gas concentration, and the simulation results were compared with observed data. The simulation results basically reproduce the lower temperature from the 1960s to mid-1970s and the warming from the 1980s for the globe and Northern Hemisphere, and better the important cold (1950 1976) and warm (1977-2000) periods in the past 50 years over North China. The correlation coefficient is 0.34 between simulations and observations (significant at a more than 0.05 confidence level). The range of winter temperature departures for North China is between those for the eastern and western China's Mainland. Meanwhile, the summer precipitation trend turning around the 1980s is also successfully simulated. The climate change trends in the future 30 years were simulated with the CO2 concentration under IPCC SRES-B2 emission scenario. The results show that, in the future 30 years, winter temperature will keep a warming trend in North China and increase by about 2.5~C relative to climate mean (1960-1990). Meanwhile, summer precipitation will obviously increase in North China and decrease in South China, displaying a south-deficit-north-excessive pattern of precipitation.  相似文献   

15.
Numerical Simulation of Long-Term Climate Change in East Asia   总被引:1,自引:0,他引:1       下载免费PDF全文
A 10-yr regional climate simulation was performed using the fifth-generation PSU/NCAR Mesoscale Model Version 3 (MM5V3) driven by large-scale NCEP/NCAR reanalyses. Simulations of winter and summer mean regional climate features were examined against observations. The results showed that the model could well simulate the 10-yr winter and summer mean circulation, temperature, and moisture transport at middle and low levels. The simulated winter and summer mean sea level pressure agreed with the NCAR/NCEP reanalysis data. The model could well simulate the distribution and intensity of winter mean precipitation rates as well as the distribution of summer mean precipitation rates, but it overestimated the summer mean precipitation over North China. The model's ability to simulate the regional climate change in winter was superior to that in summer. In addition, the model could simulate the inter-annual variation of seasonal precipitation and surface air temperature. Geopotential heights and temperature at middle and high levels between simulations and observations exhibited high anomaly correlation coefficients. The model also showed large variability to simulate the regional climate change associated with the El Nino events. The MM5V3 well simulated the anomalies of summer mean precipitation in 1992 and 1995, while it demonstrated much less ability to simulate that in 1998. Generally speaking, the MM5V3 is capable of simulating the regional climate change, and could be used for long-term regional climate simulation.  相似文献   

16.
CMIP5模式对中国东北气候模拟能力的评估   总被引:5,自引:0,他引:5  
利用CN05观测资料和参与IPCC第五次评估报告的45个全球气候系统模式的模拟结果,分析了新一代全球气候模式对中国东北三省(1961~2005年)气温和降水的模拟能力。结果表明:1)绝大多数模式都能较好地模拟出研究区内显著增温的趋势,对气温的年际变化模拟能力则相对有限;2)所有模式均能很好地再现气温气候态的空间分布特征,且多模式集合模拟结果优于绝大多数单个模式,空间相关系数达到了0.96;3)对于降水的模拟结果,模式间差异较大,多模式集合能较好地再现其空间分布规律(空间相关系数为0.86),对降水年际变化及线性变化趋势的模拟能力则较差。总体来说,多模式集合对东北气候的时空变化特征具有一定的模拟能力,且对气温模拟效果优于降水,对空间分布的模拟能力优于时间变化。  相似文献   

17.
东亚区域气候变化的长期数值模拟试验   总被引:16,自引:4,他引:16  
文中利用NCAR的中尺度模式MM 5V3对东亚地区进行了 10a的长期积分模拟试验 ,并着重对冬、夏两季东亚区域气候变化特征进行了分析。分析结果表明 :(1)模式能够合理地模拟出 10a冬、夏平均的区域气候特征。模拟的 10a冬季平均降水的分布和强度与实际比较一致 ,对夏季降水分布特征的模拟也比较合理 ,但模拟的夏季华北降水偏多。模式对冬季平均场的模拟要优于对夏季的模拟 ;(2 )模式对降水、地面气温年际变率的模拟较为合理 ,模拟的中高层环流、温度场等要素的距平相关系数都比较高 ;(3)模式对不同ElNi no年对东亚区域气候变化影响的模拟能力有所不同 ,模拟的 1992 ,1995年的结果比较合理 ,但对 1998年模拟得不理想 ;(4)MM5V3模式具备一定的区域气候模拟能力。  相似文献   

18.
华东地区极端降水动力降尺度模拟及未来预估   总被引:1,自引:1,他引:0       下载免费PDF全文
利用CMIP5(Coupled Model Intercomparison Project Phase 5)数据集中的全球模式IPSL-CM5A-LR及其嵌套的区域气候模式WRF(Weather Research and Forecasting),分别评估了模式对1981~2000中国华东区域极端降水指标的模拟能力,并讨论了RCP8.5排放情景下21世纪中期(2041~2060年)中国华东极端降水指标的变化特征。相比驱动场全球气候模式,WRF模式更好地再现了各个极端指数空间分布及各子区域降水年周期变化。在模拟区域气候特点方面,WRF模拟结果有所改进,并在弥补全球模式对小雨日过多模拟的缺陷起到了明显的作用。21世纪中期,华东区域的降水将呈现明显的极端化趋势。WRF模拟结果显示年总降雨量、年大雨日数、平均日降雨强度在华东大部分区域的增幅在20%以上;年极端降雨天数、连续5 d最大降水量的增幅在华东北部部分区域分别超过了50%和35%,同时最长续干旱日在华东区域全面增加;且变化显著的格点主要位于增加幅度较大的区域。未来华东区域会出现强降水事件和干旱事件同时增加的情况,降水呈现明显的极端化趋势,且华东北部极端化强于华东南部。  相似文献   

19.
The climatological characteristics of precipitation and the water vapor budget in the Haihe River basin (HRB) are analyzed using daily observations at 740 stations in China in 1951-2007 and the 4-time daily ERA40 reanalysis data in 1958-2001. The results show that precipitation and surface air temperature present significant interannual and interdecadal variability, with cold and wet conditions before the 1970s but warm and dry conditions after the 1980s. Precipitation has reduced substantially since the 1990s, with a continued increase of surface air temperature. The total column water vapor has also reduced remarkably since the late 1970s. The multi-model ensemble from the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) has capably simulated the 20th century climate features and successfully reproduced the spatial patterns of precipitation and temperature. Unfortunately, the models do not reproduce the interdecadal changes. Based on these results, future projections of the climate in the HRB are discussed under the IPCC Special Report on Emissions Scenarios (SRES) B1, A1B, and A2. The results show that precipitation is expected to increase in the 21st century, with substantial interannual fluctuations relative to the models’ baseline climatology. A weak increasing trend in precipitation is projected before the 2040s, followed by an abrupt increase after the 2040s, especially in winter. Precipitation is projected to increase by 10%-18% by the end of the 21st century. Due to the persistent warming of surface air temperature, water vapor content in the lower troposphere is projected to increase. Relative humidity will decrease in the mid-lower troposphere but increase in the upper troposphere. On the other hand, precipitation minus evaporation remains positive throughout the 21st century. Based on these projection results, the HRB region is expected to get wetter in the 21st century due to global warming.  相似文献   

20.
The complex topography and high climatic variability of the North Western Mediterranean Basin (NWMB) require a detailed assessment of climate change projections at high resolution. ECHAM5/MPIOM global climate projections for mid-21st century and three different emission scenarios are downscaled at 10 km resolution over the NWMB, using the WRF-ARW regional model. High resolution improves the spatial distribution of temperature and precipitation climatologies, with Pearson's correlation against observation being higher for WRF-ARW (0.98 for temperature and 0.81 for precipitation) when compared to the ERA40 reanalysis (0.69 and 0.53, respectively). However, downscaled results slightly underestimate mean temperature (≈1.3 K) and overestimate the precipitation field (≈400 mm/year). Temperature is expected to raise in the NWMB in all considered scenarios (up to 1.4 K for the annual mean), and particularly during summertime and at high altitude areas. Annual mean precipitation is likely to decrease (around ?5 % to ?13 % for the most extreme scenarios). The climate signal for seasonal precipitation is not so clear, as it is highly influenced by the driving GCM simulation. All scenarios suggest statistically significant decreases of precipitation for mountain ranges in winter and autumn. High resolution simulations of regional climate are potentially useful to decision makers. Nevertheless, uncertainties related to seasonal precipitation projections still persist and have to be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号