首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用2013—2016年GOSAT上被动红外探测器(TANSO)官方反演的大气CH_4柱浓度,采用普通克里金插值(Ordinary Kriging)方法对GOSAT卫星数据产品进行插值预处理,并利用ArcGIS地理信息系统空间分析软件提取各省份CH_4平均浓度,分析中部地区CH_4浓度的时空分布。结果表明,由GOSAT反演的中部地区大气CH_4年均浓度由2013年的1 827.0×10~(-9)增长到2016年的1 857.9×10~(-9),其平均绝对增长率为10.3×10~(-9)/a。中部地区大气CH_4年均浓度略低于长三角地区,高于京津冀和东三省地区。中部地区大气CH_4呈现较强的季节变化特征,江西、湖南、湖北峰值出现在9月,安徽、河南、山西峰值则出现在8月,中部六省去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区。我国中部地区CH_4浓度高值区主要分布在江西、湖南及周边区域,低值区则集中在河南以北及山西地区。  相似文献   

2.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

3.
利用OMI卫星遥感数据提供的NO_2浓度产品及气象站点数据,分析了2005—2017年贵州省对流层NO_2柱浓度时空分布特征及其影响因素。结果表明:①贵州省NO_2柱浓度年均值较小,说明贵州省空气质量整体比较好,年变化为NO_2柱浓度先升高再降低的趋势,冬季最高、夏季最低,而月变化呈内凹型分布,一年中最大值大多出现在1月,7月出现最低值的次数最多;②空间分布呈西高东低、北高南低的特点;③在9个地市州中,六盘水市的NO_2柱浓度年均值最大,贵阳市位于第二,浓度最低的是黔东南州。④降水和温度对NO_2柱浓度都具有一定的负影响。  相似文献   

4.
为了了解洛阳市O_3污染特征及其影响因素,利用2017年洛阳市7个国控点监测到的O_3、NO_2浓度及气象要素逐时数据,统计分析了2017年洛阳市O_3及NO_2的时间分布特征及NO_2浓度、气象因子对O_3浓度的影响。结果表明,洛阳市2017年O_3日最大8 h第90百分位数浓度为200μg/m~3,是二级标准的1.25倍。O_3和NO_2浓度存在明显的季节性变化特征,O_3浓度夏季最高,冬季的最低;NO_2浓度冬季最高,夏季的则最低。O_3浓度的日变化呈现为单峰分布,午后浓度较高,峰值出现在15:00左右;NO_2受机动车早晚高峰影响,表现为双峰分布,峰值分别出现在08:00和21:00。O_3与NO_2浓度呈现出良好的负指数函数关系,当洛阳市NO_2浓度低于40μg/m~3时,存在着O_3浓度超标的风险。高温低湿条件下有利于O_3的生成,当温度超过27℃时,洛阳市O_3小时浓度开始出现超标现象,且温度越高,超标风险越大;当相对湿度低于40%时,O_3小时平均浓度超标率最高为63.30%,随着相对湿度的增加,超标率逐渐降低,当相对湿度大于70%时,未出现O_3小时浓度超标现象。  相似文献   

5.
为了解香河地区气溶胶尺度谱的基本特征,自2012年5月起,利用扫描电迁移率粒径谱仪(SMPS)对河北香河地区的亚微米(13.8~723.4 nm)气溶胶尺度谱分布进行了近2 a的测量。基于该数据集,分析了气溶胶尺度谱的季节变化和日变化特征及气象要素对气溶胶浓度的影响。结果发现,观测期间埃根核模态(20.0~100.0 nm)、积聚模态(100.0~723.4 nm),以及总的气溶胶数浓度、表面积浓度和体积浓度均值分别为7.0×103cm~(-3)、7.5×103cm~(-3)、14.9×103cm~(-3)、1125μm2·cm~(-3)和50μm~3·cm~(-3)。香河地区积聚模态的粒子数浓度接近华北地区其他污染测站的结果,但高于发达国家的测值。冬季气溶胶的平均浓度最高(18.1×10~3cm~(-3)),而春季最低(12.3×10~3cm~(-3))。不同季节,气溶胶的数谱分布主要为单峰分布,平均峰值直径约为105 nm。气溶胶浓度的日变化受机动车排放的影响显著,存在早晚两个高值中心,分别出现在早上的06:00—09:00和晚上的19:00—21:00。风速、风向对气溶胶数浓度的影响较大,低风速(2 m/s)和南风条件,尤其是吹西南风时,气溶胶浓度的增加显著。  相似文献   

6.
曹冬杰  闫欢欢  齐瑾 《气象科技》2018,46(2):374-381
闪电放电过程发出很强的光辐射,促进了光化学反应的进行,加快了NO_x向上的垂直输送,造成对流层上部NO_x的增加。闪电生成氮氧化物(LNO_x)是对流层上部NO_x(NO和NO_2)的主要来源,影响了对流层和平流层大气成分的垂直分布。本文利用2005—2013年TRMM卫星LIS传感器闪电密度和Aura卫星OMI传感器对流层NO_2垂直柱总量遥感观测数据,分析了中国地区对流层NO_2柱总量时空分布特征及其与闪电活动的相关性。发现,青藏高原地区对流层NO_2柱总量与闪电密度变化特征一致,表现为夏季高,冬季低,该地区LNO_x估算值约为339mol/次。基于LNO_x估算值分析中国不同地区LNO_x/NO_x百分比分布特征,发现,青藏高原地区春季和夏季LNO_x/NO_x较高,约为20%~60%,秋季和冬季低于20%;与之相比,NO_x排放较为严重的四川盆地、长江三角洲和珠江三角洲等地区普遍低于20%,中国地区LNO_x/NO_x百分比平均值低于10%。由此得出结论,LNO_x是青藏高原地区NO_x的主要排放源,人口密集和工业程度较高的四川盆地、长江三角洲和珠江三角洲地区NO_x主要来自于其它排放源。研究结果揭示了中国地区对流层NO_x柱总量分布特征及其与闪电活动的关系,对于研究闪电过程对于氮氧化物生成量的影响有重要意义。  相似文献   

7.
为进一步认识闪电放电对夏季青藏高原地区臭氧低值区形成的可能影响,本文利用2005年-2013年星载光学瞬变探测器O TD和闪电成像仪LIS资料合成的LIS/OTD2.3版本再分析格点资料与荷兰皇家气象研究所TIMES提供的由OMI卫星得到的对流层NO_2垂直浓度月均值资料(NO2VCD)以及臭氧总浓度柱月均值资料(TOC)分析了中国地区臭氧(O_3)的空间分布特征,确定了青藏高原臭氧低值区范围。分析了所选范围内夏季闪电、NO_2VCD的空间分布以及年际变化关系。基于上述分析结果,进一步计算分析了NO_2VCD与O_3逐年夏季间浓度的差值关系。结果表明:青藏高原臭氧低值区范围为25°-43°N、72°-107°E。闪电产生的氮氧化物(LNOX)会明显导致夏季青藏高原臭氧的降低。  相似文献   

8.
利用NCEP/NCAR提供的1950—2015年对流层顶温度月平均资料及ECWMF提供的1979—2015年大气臭氧柱总量月平均资料,运用经验正交函数分解方法(EOF),对近66 a中国地区上空对流层顶温度的时空演变特征进行分析,并进一步探讨1979年后对流层顶温度与大气臭氧柱总量的关系。结果表明:(1)中国地区对流层顶温度随纬度升高而升高,呈现明显的纬向分布特征,近66 a对流层顶温度以-0.09℃·(10 a)~(-1)的速率下降。(2)春、冬季对流层顶温度EOF1均表现为南北反位相变化,夏、秋季均表现为全场同位相变化,这种春季与冬季、夏季与秋季主要模态较为一致的时空分布特征与大气臭氧柱总量的季节分布有很好的相关性;除夏季外,其余季节对流层顶温度EOF2表现为弱的南北两端与中部地区反位相变化特征。(3)对流层顶温度与大气臭氧柱总量之间呈显著负相关关系,相关系数为-0.724,大气臭氧柱总量由1990年代中期之前的显著损耗转变为之后的逐渐恢复,对应同期对流层顶温度表现为从偏高到偏低的转变。  相似文献   

9.
河北石家庄市近地层臭氧浓度特征及气象条件分析   总被引:1,自引:0,他引:1  
利用2016年3月至2018年2月河北石家庄市环境监测站O_3及其前体物质量浓度逐时和逐日观测资料,以及气象站逐日气象观测数据,分析石家庄市近地层O_3质量浓度的时间变化特征及其与前体物NO_2、CO和气象条件的关系。结果表明:石家庄市O_3污染2017年比2016年严重,2017年比2016年O_3超标日数增加30 d,超标率上升8%,O_3年平均质量浓度上升17μg·m~(-3)。O_3质量浓度具有明显的季节变化特征,自夏季、春季、秋季、冬季依次降低,5—9月O_3质量浓度较高,平均值超过160μg·m~(-3),6月达到峰值208μg·m~(-3)。O_3质量浓度的日变化表现为单峰型分布,最低值出现在07:00左右,峰值在14:00—16:00。太阳辐射强、气温高、日照时数长、能见度好、无降水和相对湿度较低的条件下,石家庄市易出现O_3浓度超标天气。前体物NO_2、CO与O_3质量浓度之间夏季呈现显著正相关,而冬季则呈显著负相关。  相似文献   

10.
利用2004~2006年杭州主城区环境空气监测资料,研究了O_3、NO_2和CO浓度的分布特征和时间变化规律,结果表明,杭州主城区3年的O_3、NO_2、CO的年均浓度都不大,分别为40、60、1400μg·m~(-3).四季中O_3、NO_2和CO浓度相差较大,O_3是夏季高冬季低,NO_2和CO则是秋季较高,夏季较低.O_3、NO_2和CO浓度日变化也很明显,其中O_3是单峰形态,NO_2和CO为双峰形态.不同天气条件下O_3与烃类的关系研究表明,晴天时烃类浓度减少,O_3浓度明显增加;阴天时O_3浓度较低,烃类浓度较高,它们的变化不大.白天和夜晚不同风速时O_3、C_2-C_(12)的浓度变化不同,白天风速增大时C_2-C_(12)浓度减小,O_3浓度增加;晚上无此变化.  相似文献   

11.
为了进一步了解青藏高原闪电的产生氮氧化物(LNOx)经由光化学反应对O3浓度变化及夏季O3低谷形成的可能影响,本文利用2005~2013年由OMI卫星得到的对流层NO2垂直浓度柱(NO2 VCD)、O3总浓度柱(TOC)和O3廓线以及星载光学瞬变探测器OTD和闪电成像仪LIS获取的总闪电数资料,对青藏高原和同纬度长江中下游地区的TOC和NO2 VCD月均值时空分布特征、闪电与NO2 VCD的相关性和O3的垂直分布特征及其与LNOx的关系进行了对比分析。结果表明,青藏高原的O3低谷主要出现在夏季和秋季,其TOC值比同纬度长江中下游地区低约10~15 DU(Dobson unit)。青藏高原NO2VCD总体较小,表现为夏高冬低的分布特征。青藏高原夏季O3浓度受南亚高压的影响总体呈减小趋势,但因强雷暴天气导致对流层中上部LNOx浓度升高,并随强上升气流向对流层顶输送,同时通过光化学反应使O3浓度增加,缩小了青藏高原和同纬度地区的O3浓度差,减缓了O3总浓度的下降,抑制了夏季O3低谷的进一步深化。  相似文献   

12.
传统的空气质量模型多使用简化的光化学反应机制来模拟大气污染物的形成.这些机制主要基于烟雾箱实验拟合的反应速率和产物来模拟二次产物(如臭氧(O3))前体物的氧化反应,具有一定的不确定性,导致模拟结果产生偏差.针对该问题,本研究将详细的大气化学机理(MCMv3.3.1)与美国国家环境保护局研制的第三代空气质量预报和评估系统CMAQ相结合(CMAQ-MCM),模拟研究长三角地区2015年8月27—9月5日臭氧高发时段的空气质量.CMAQ-MCM模型可以较好地模拟长三角地区6个代表城市O3和其前体物随时间的变化趋势.对模拟的O3日最大8 h平均浓度的统计分析表明,徐州表现最好(标准平均误差=-0.15,标准平均偏差=0.23).在长三角地区,居民源对挥发性有机物(VOCs)的贡献最大,占39.08%,其次是交通运输(33.25%)和工业(25.56%).能源对总VOCs的贡献最小,约为2.11%.对活性氧化氮(NOy)的分析表明,其主要组分是NOx(80%),其次是硝酸(HNO3)(<10%).O3的空间分布与NOy和NOx非常相似.HCHO等其他氧化产物的分布与NOx相似,这很可能是由于在高NOx条件下VOCs氧化产生的产物.甲基乙烯基酮(MVK)和甲基丙烯醛(MACR)的空间分布与自然源VOCs (BVOCs)非常相似,表明长三角地区MVK和MACR主要由BVOCs氧化生成.长三角地区受到人为源和自然源排放相互作用的影响.  相似文献   

13.
对临安大气本底站2003-2004年冬、夏季二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)进行了分析.结果表明:冬季NO2和SO2平均体积分数分别为19.48×10-9和35.74 x10-9,而夏季的平均体积分数分别为4.81×10-9和8.12×10-9,冬季高于夏季;O3在夏季的平均体积分数为33.55×10-9,略高于冬季的25.44×10-9;夜间NO2和SO2体积分数比白天高,并且NO2呈明显的单峰单谷型分布,O3也呈单峰型但峰值出现在白天.NO2、SO2体积分数存在着明显的“假日效应”,假日比非假日低,周五高于假日和非假日;但O3体积分数没有明显的假日效应.降水对SO2有明显的清除作用,但对NO2的清除作用不明显.与风向对比发现,夏季高体积分数的NO2、SO2都受到NW、WNW风的影响,冬季则分别受NE和SW、SSW风的影响;而O3受风向的影响较复杂,与局地光化学反应有关.  相似文献   

14.
中美大气化学联合考察实验结果的初步分析与比较   总被引:1,自引:0,他引:1  
根据临安区域本底站观测资料分析结果得出,中国中纬度地区秋、冬季O3及其前体物NOx等浓度偏高,可以对农作物和地表生态系统产生影响.观测结果表明:近地层大气O3浓度主要决定于地面总辐射量控制下的光化学反应过程;O3的生成受到前体物NOx的控制,但O3与NOx存在着明显的非线性关系.从PEM-WESTA和B的实验及1995年的观测资料表明,O3的生成效率随着NOx浓度的增大而减小.尽管O3的生成速率秋季比冬季的大,但由于秋季较高的NOx抑制了过氧基的生成,因此冬季O3的累积量几乎可以和秋季相比拟.在临安观测的NMHC和NOx的比值比国外同纬度地区测值要大.这说明在临安本底站O3的光化学生成中,NMHC不是控制物种.从而提示我们,在这些季节临安O3光化学产物能够被NOx浓度所控制.中美大气化学联合考察(PEM-WEST-B)实验期间,台湾省的卡盯站SO2的平均浓度为0.29ppb,O3的平均浓度为42.2ppb,可以认为此值为低纬度海岛的本底值.1994年PEM-WEST-B实验期间临安站的观测资料和台湾省的卡盯站资料相比,临安站SO2的浓度约为卡盯站SO2浓度的50倍左右,从而可以看出人类活动对大气本底的显着影响.  相似文献   

15.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

16.
Satellite measurements of tropospheric column O3 and NO2 in eastern and southeastern Asia are analyzed to study the spatial and seasonal characteristics of pollution in these regions. Tropospheric column O3 is derived from differential measurements of total column ozone from Total Ozone Mapping Spectrometer (TOMS), and stratospheric column ozone from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS). The tropospheric column NO2 is measured by Global Ozone Monitoring Experiment (GOME). A global chemical and transport model (Model of Ozone and Related Chemical Tracers, version 2; MOZART-2) is applied to analyze and interpret the satellite measurements. The study, which is based on spring, summer, and fall months of 1997 shows generally good agreement between the model and satellite data with respect to seasonal and spatial characteristics of O3 and NO2 fields. The analysis of the model results show that the industrial emission of NOx (NO + NO2) contributes about 50%–80% to tropospheric column NO2 in eastern Asia and about 20%–50% in southeastern Asia. The contribution of industrial emission of NOx to tropospheric column O3 ranges from 10% to 30% in eastern Asia. Biomass burning and lightning NOx emissions have a small effect on tropospheric O3 in central and eastern Asia, but they have a significant impact in southeastern Asia. The varying effects of NOx on tropospheric column ozone are attributed to differences in relative abundance of volatile organic compounds (VOCs) with respect to total nitrogen in the two regions.  相似文献   

17.
针对当前单模式系统臭氧(O3)预报的不确定性问题,提出了一种基于活动区间的多模式超级集成的、高效的预报方法。本研究基于长江三角洲(长三角)地区多模式空气质量预报系统,将改进后的超级集成预报方法(AR-SUP)运用到2015年长三角地区的O3预报中,并与滑动训练期的超级集成预报(R-SUP)、多模式集成平均预报(EMN)、消除偏差的集成平均预报(BREM)对比,结果表明AR-SUP对预报效果的改善最明显,其在暖季和冷季的均方根误差(RMSE)较最优单模式平均下降了20%和23%。将AR-SUP运用到48 h和72 h预报中发现,当预报时效增加时该方法依旧保持较高的预报技巧。多项统计数据均证明AR-SUP在研究时段内所有站点均能显著减小O3预报误差、提高整体相关性和一致性,有效提高当前短期(三天)预报准确率。  相似文献   

18.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

19.
A programme of ground-based stratospheric and total NO2 column measurements was instituted at the Laboratory of Atmospheric Physics (40.5° N, 22.9° E) in August 1985. We present here the results of the first two years of measurements with a modified Canterbury filter photometer, details of which are given in the text. The stratospheric NO2 column, obtained at twilight during low local NO2 levels, shows the seasonal variation with monthly mean values of about 6×10-15 molec. cm-2 in the summertime to about 2.2×10-15 molec. cm-2 in the wintertime. These measurements compare well with measurements obtained with different instruments by other groups at similar latitudes (about 40° N) but in different places. Also, the asymmetry of the evening-to-morning stratospheric NO2 over Thessaloniki was found to be on the average equal to 1.58. Total NO2 column over Thessaloniki has a pronounced seasonal variation with amplitude of 0.68 matm. cm which can be explained partly from measured local NO2 sources which discharge in the mixing layer and partly from photolysis of the NO2 reservoir species.  相似文献   

20.
The kinetics of the reaction of NO2 with O3 have been investigated at 296 K, using UV absorption spectroscopy to monitor decay of NO2 or O3 and infrared laser absorption spectroscopy to monitor formation of the reaction product N2O5. The results both for the rate coefficient at 296 K (k 1=3.5×10-17 cm3 molecule-1 s-1) and the reaction stoichiometry (NO2/O3=1.85±0.09) are in good agreement with previous studies, confirming that the two step mechanism involving formation of symmetrical NO3 as an intermediate is predominant.% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaaeOmaaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaa% bodaaeqaaOWaa4ajaSqaaaqabOGaayPKHaGaaeOtaiaab+eadaWgaa% WcbaGaae4maaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaabkdaaeqa% aaaa!41D7!\[{\text{NO}}_{\text{2}} + {\text{O}}_{\text{3}} \xrightarrow{{}}{\text{NO}}_{\text{3}} + {\text{O}}_{\text{2}} \]% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaae4maaqabaGccqGHRaWkcaqGobGaae4tamaaBaaa% leaacaqGYaaabeaakiabgUcaRiaab2eadaGdKaWcbaaabeGccaGLsg% cacaqGobWaaSbaaSqaaiaabkdaaeqaaOGaae4tamaaBaaaleaacaqG% 1aaabeaakiabgUcaRiaab2eaaaa!4464!\[{\text{NO}}_{\text{3}} + {\text{NO}}_{\text{2}} + {\text{M}}\xrightarrow{{}}{\text{N}}_{\text{2}} {\text{O}}_{\text{5}} + {\text{M}}\]A possible minor role for the unsymmetrical ONOO species is suggested to account for the lower-than-expected stoichiometry factor. The importance of this reaction in the oxidation of atmospheric NO2 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号