首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用广东省汕尾红海湾大型浮标站的近4年观测资料,统计分析汕尾红海湾近海海面风的日变化特征、季节变化特征和大风特点.分析表明:红海湾近海海面秋、冬风速大,夏季风速小,风向以东北风为主;平均情况下中午前后风速较小,早晚较大,风向以东北风为主;冷空气和热带气旋是造成红海湾近海大风的主要天气系统;大风平均阵风系数较小,最大阵风系数在热带气旋影响下出现.  相似文献   

2.
2019年秋季(9—11月)大气环流特征为:北半球极涡呈绕极型分布,中高纬度环流呈4波型。随月份增加,欧亚大陆中高纬度环流的经向度不断加大,冷空气势力增强,但仍较历史平均偏弱。西太平洋副热带高压较历史平均偏强,热带气旋活动频繁。我国近海出现了17 次8级以上大风过程,其中冷空气大风过程有9次,热带气旋大风过程4次,冷空气与热带气旋共同影响的大风天气过程3次,冷空气和温带气旋共同影响的大风过程1次。西北太平洋和南海共生成16个热带气旋,全球其他海域生成热带气旋 27个。我国近海浪高在2 m以上的海浪过程有9次。秋季,我国近海海域海面温度逐月下降,北部海域的降温幅度明显大于南部海域。  相似文献   

3.
聂高臻  黄彬 《山东气象》2022,42(1):74-82
2021年秋季(9—11月)北半球大气环流特征为:极涡整体呈单极型,中高纬环流呈5波型分布,欧亚地区西风带环流形势季节内调整大,副热带高压(以下简称“副高”)偏强,西伸明显。秋季我国近海大风过程主要由冷空气、温带气旋和热带气旋影响造成。在12次8级以上大风过程中,冷空气影响8次,温带气旋影响6次,台风影响4次。西北太平洋和南海共生成9个台风,其中5个台风进入我国近海,在东西带状分布的副高影响下,近海台风主要活跃于南部海域;全球其他海域共命名热带气旋18个。我国出现2 m以上大浪过程的日数为74 d,约占总日数的81%,大浪过程与大风过程联系密切。秋季我国近海海面温度整体偏高,随着冷空气的逐渐活跃,北部海区和沿岸海域海面降温迅速,沿岸海面温度梯度加大,我国近海海域中,海面温度梯度最大的区域出现在东海。  相似文献   

4.
魏晓雯  陈亮  赵蕾  陈明 《气象科技》2021,49(5):754-761
本文以海南洋浦港为例,利用2015—2019年大风资料,通过合成分析等方法深入探讨了不同类型大风过程的环流特征、发生机制及其预报指标。结果表明:(1)洋浦港大风过程按照影响系统可分为冷空气型、切变线型、热带气旋型和热低压型4种。(2)冷空气型大风主要是由强冷平流引发的;当925hPa关键区24h降温超过6℃且北风分量大于11.5m/s时,洋浦港6h后易发生冷空气型大风;切变线型大风主要产生于强对流引发的雷暴大风、飑线等;当925hPa低空切变线、500hPa南支槽等天气尺度系统出现有利配置,对流有效位能CAPE≥1500J·kg~(-1),且具有较合适的对流抑制能量CIN值时,易发生切变线型大风;热低压型大风与海陆热力差异引起的海风锋密切相关;当海南岛西北部陆地与近海海面的6h变温之差≥3.5℃,CAPE≥1500J·kg~(-1),CIN≤20J·kg~(-1)时,海风锋极易触发雷暴大风等强对流天气;热带气旋型大风主要发生在TC中心附近的等压线密集带以及外围螺旋雨带的中小尺度对流系统中。业务预报时可在数值预报基础上结合统计规律以及卫星、雷达等实况资料综合判定风力等级。  相似文献   

5.
2017年冬季(2017年12月—2018年2月)大气环流特征为:北半球极涡呈偶极型分布,中高纬度呈4波型。12月,亚洲中东部中高纬度环流经向度较大,有利于冷空气南下。2018年1月,西伯利亚冷高压较12月更强,冷空气自北向南影响我国近海。2月,冷空气活动减弱,有温带气旋入海并发展。我国近海出现了19次8级以上大风过程,其中冷空气大风过程14次,冷空气和温带气旋共同影响的大风过程2次,冷空气与热带气旋共同影响的大风过程1次,热带气旋大风过程2次。2 m以上的海浪过程有19次,未出现2 m以上大浪的天数仅有10 d。我国近海出现6次比较明显的海雾过程,出雾区域在北部湾附近海域,出雾时间在夜间—早晨时段。西北太平洋和南海共生成4个台风。海面温度整体呈下降趋势。  相似文献   

6.
2018年春季(3—5月)大气环流特征为:北半球极涡呈偶极型分布,中高纬度呈4波型。3月,亚洲中东部中高纬度环流呈经向型,利于冷空气南下。4月,冷空气势力减弱。5月,温带气旋活动增多。我国近海出现了15次8级以上大风过程,其中冷空气大风过程有8次,冷空气和温带气旋共同影响的大风过程有3次,入海温带气旋大风过程有2次,强对流导致雷暴大风过程2次。我国近海浪高在2 m以上的海浪过程有14次。春季共有11次比较明显的海雾过程,分别为:3月3次,4月3次,5月5次。西北太平洋和南海共生成1个台风,全球其他各大洋共有热带气旋 14个,分别为北大西洋1个、南太平洋6个、南印度洋 5个、北印度洋2个。海面温度整体呈上升趋势。  相似文献   

7.
2020年秋季(9—11月)大气环流特征表现为,北半球极涡呈单极型分布,中高纬环流呈4波型。9—11月,欧亚大陆中高纬环流经向度不断加大,冷空气势力增强。西太平洋副热带高压较历史平均偏强,热带气旋活动频繁。我国近海出现了19次8级以上大风过程,其中冷空气大风过程6次,台风大风过程4次,入海气旋大风过程1次,冷空气与热带气旋共同影响的大风过程7次,冷空气和温带气旋共同影响的大风过程1次。西北太平洋和南海共生成13个热带气旋,其中10月共有7个热带气旋生成,追平10月热带气旋生成数的历史最高纪录;全球其他海域共生成热带气旋26个。我国近海未出现2 m以上大浪过程的天数仅有12 d,约占秋季总日数的13%。秋季,我国近海海域呈明显降温过程,北部海域的降温幅度明显大于南部海域,受连续北上影响我国北部海域的热带气旋活动影响,9月黄海东部及东海东部的海面温度较气候态明显偏低。  相似文献   

8.
2018年冬季(2018年12月—2019年2月)大气环流特征为:北半球极涡呈单极型分布,主体位于北冰洋上空偏向亚欧大陆一侧。12月,亚洲中东部中高纬环流经向度较大,利于冷空气南下;2019年1—2月,环流经向度减小,中高纬地区以纬向环流为主,冷空气势力减弱,东部及南部海区海雾过程增多。我国近海出现了17次8级以上大风过程,其中冷空气大风过程有13次,冷空气和温带气旋共同影响的大风过程有2次,冷空气与热带气旋共同影响的大风过程有1次, 温带气旋大风过程有1次。我国近海浪高在2 m以上的海浪过程有14次,2 m以上大浪的天数共计64 d。冬季共有10次比较明显的海雾过程,多在北部湾附近海域,出雾时间集中于夜间至早晨。南北海域海面温度之差为21~28 ℃,海面温度整体呈下降趋势。西北太平洋和南海有3个热带气旋活动。  相似文献   

9.
2018年秋季(9—11月)大气环流特征为:北半球极涡呈偶极型分布,中高纬度西风带呈5波型分布,且强度较夏季增强。9—10月,副热带高压位置偏西,强度偏强,热带气旋活动频繁;中高纬度西风带较为平直,槽脊活动不明显;11月,经向环流增大,冷空气势力增强。我国近海海域出现了13次8级以上的大风过程,其中6次主要是由冷空气和热带气旋共同影响造成的,冷空气大风过程有5次,热带气旋影响的大风过程有2次。我国近海浪高在2 m以上的海浪过程有10次。西北太平洋和南海共生成8个台风和1个热带低压,全球其他各大洋共有28个热带气旋,较常年偏多。海面温度整体呈下降趋势。未出现雷暴大风和大范围的海雾过程。  相似文献   

10.
热带气旋是沿海地区最具破坏力的自然灾害之一。研究近海热带气旋对深圳三个重点港湾码头站的定量阵风预报。在前人研究的基础上,除了考虑热带气旋强度、热带气旋相对于气象台站的距离、方位角等热带气旋特性因素外,进一步详细分析了热带气旋尺寸对热带气旋引发重点区域的定点阵风预报影响。研究使用2014年以前的港湾码头站在热带气旋影响期间的小时极大风观测记录与各热带气旋特性因素建立预报模型,用2015—2018年的14个近海热带气旋对港湾码头站的小时极大风影响来检验预报模型的实用性。结果发现在进一步考虑了热带气旋尺寸因素对热带气旋引发定点大风影响后,预报模型可以精准地预报重点区域的最大阵风值,其预报结果可为行业气象风险评估提供有价值的参考。   相似文献   

11.
In this study, coastal gales and rainfall attributed to the landfall of Typhoon Soudelor (2015) are analyzed based on observational dense automatic weather stations data, advanced scatterometer-retrieved 10-m ocean surface wind data and simulations using the Weather Research and Forecast (WRF) model. This study focuses on gale bands in the right-front quadrant of the typhoon and associated coastal winds over Zhejiang and Fujian Provinces in China before the landfall of the typhoon. The results are summarized as follows. (1) 10-m surface wind data from automatic weather stations over land and islands, advanced scatterometer-retrieved 10-m ocean surface wind data, and the WRF simulation indicate similar mesoscale offshore gales. (2) The model simulation with a 333-m grid mesh indicates a gale zone over the right-front quadrant of the typhoon; the gale is “broken” over the coastal areas, and formed an inhomogeneous gale band. (3) The model-simulated winds agree well with the island observations. (4) Non-uniform gales over boundary layers result in horizontal wind-speed gradients and strong convergence that favors the development of convection and the maintenance of ocean surface gales.  相似文献   

12.
利用2015年5月至2020年4月辽宁省大连地区9个国家气象站、2017年165个区域气象站逐10 min测风资料, 从风向、风级、月际变化、日变化、空间分布和天气影响系统等对大连地区最大、平均、最小阵风系数进行统计分析。结果表明: 1—12月平均阵风系数的变化范围为1.66~1.77, 秋末冬初平均阵风系数偏大, 春夏季节偏小; 与冷空气相对应风向的平均阵风系数大于与暖空气相对应的风向; 随着风级的增大, 最大、最小阵风系数向平均阵风系数收敛; 不同风级下阵风系数的频率分布均呈单峰型分布, 风级越大, 分布范围越窄。除西南风外, 其他风向的阵风系数均表现出白天大、夜间小的特点。大连地区阵风系数具有明显的地域特点, 东南和西北部沿海区域的阵风系数比内陆和西南沿海偏小, 风向基本不影响阵风系数的空间分布。大连的大风过程多受海上气旋和高压前部双系统共同影响, 气旋、台风以及雷暴大风的平均阵风系数大于同风级的平均值。  相似文献   

13.
琼州海峡沿岸大风分布规律及影响系统分析   总被引:1,自引:0,他引:1  
郭冬艳  姜涛  陈有龙  辛吉武 《气象》2011,37(11):1372-1379
利用琼州海峡南北沿岸自动气象站2007年9月至2010年8月风向、风速资料,分析了最大风和极大风两种大风事件标准下的海峡沿岸大风分布规律,并基于大风天气影响系统分析南北沿岸大风的差异。结果表明:琼州海峡南侧沿岸大风事件多于北侧沿岸,其中最大风标准下的大风事件南侧沿岸明显多于北侧沿岸,但极大风标准下的大风事件北侧沿岸则多于南侧沿岸,且极大风风速明显偏大;北侧沿岸两种大风事件及南侧沿岸最大风事件均主要出现在秋冬季节,其中,两侧沿岸最大风事件主要由冷空气影响造成,南侧沿岸极大风事件集中出现在秋季,由冷空气影响造成较少;两岸位于海峡东侧入口沿岸的自动站点出现大风频率最高,风速偏大,两侧入口沿岸站点次之,中间沿岸各站出现大风的频率相对较低;海峡南北沿岸出现的大风风向多为北到东风;东路冷空气比西路冷空气更易造成海峡南北沿岸同步大风,琼州海峡对冷空气湍流强度的消弱作用明显。  相似文献   

14.
浙江海岛台风和冬季大风阵风特征的对比分析   总被引:3,自引:1,他引:3  
为了提高阵风预报准确率,利用2006—2016年浙江7个海岛气象站资料和ERA-interim资料,分析了台风和冬季大风的阵风因子与10 m稳定风速、风向、Brunt-Vaisala频率、总体理查逊数、边界层250~1 000 m风速及其与10 m稳定风速比值等的关系,对比两种大风系统阵风的主要成因差异,最后对冬季大风的阵风因子进行拟合。(1)从总体上,台风阵风因子比冬季大风要大0.1~0.2,波动幅度也一般比冬季大风偏大0.3~0.5。有些站点在稳定风速较大时,阵风因子随稳定风速变化不明显,而有的站点变化幅度较大。(2)站点不同方位的地表特征差异明显,导致台风和冬季大风的阵风因子在某个风向上有较统一的最大值和最小值,两者差值一般为0.2~0.3。(3)大气边界层台风样本主要表现为气流辐合上升及正涡度,而冬季大风样本主要表现为辐散下沉及负涡度,台风垂直速度、涡度和散度的强度均明显大于冬季大风样本;从Brunt-Vaisala频率来看,边界层750 m处冬季大风样本总体为静力不稳定,而台风样本总体为静力稳定;从总体理查逊数来看,台风样本和冬季大风样本两者边界层250 m处动力不稳定程度接近。(4)台风和冬季大风的阵风主要形成机制不同,冬季阵风与边界层上层气流向下动量传输引发的辐合辐散有关,而台风阵风可能更多与边界层气流的水平动量输送引发的辐合辐散有关。(5)基于风向、边界层1 000 m处风速和10 m稳定风速的冬季大风阵风因子的拟合模型,比仅考虑10 m稳定风速的拟合模型的绝对误差减少了20%~50%,误差方差也减少了10%~30%。   相似文献   

15.
基于宁波多普勒雷达、浙江省自动气象站、宁波凉帽山高塔梯度观测等资料,对1416号强热带风暴“凤凰”登陆浙江后的风场时空变化进行分析。结果表明:“凤凰”结构不对称,8级以上风速带主要位于风暴中心前进方向的前侧和右侧。前侧最大风速半径一直维持在60 km左右,最大风速带宽度约为50 km;其右侧最大风速半径为80~120 km,随中心北移有增大趋势,最大风速带宽度约100 km;其前侧和右侧最大风速半径在垂直方向上变化不大。“凤凰”前侧TREC(Tracking Radar Echoes by Correlation)风速在1 km高度最强,其上则随高度的增大而减小,其右侧1~3 km高度TREC风速的垂直变化明显小于前侧。宁波凉帽山高塔处TREC风和梯度观测表明:“凤凰”影响期间,高塔上空159 m和2~4 km高度出现多个风速高值中心;常通量层高度约为159 m;常通量层内风廓线遵从对数率,当高塔位于“凤凰”右前侧时塔层阵风系数随高度增大而减小,当高塔位于“凤凰”中心附近和右后侧时阵风系数明显增大,且层次差异减小;常通量层以上159~318 m的塔层风廓线不满足指数率或对数率,阵风系数上下差异不大。   相似文献   

16.
一种概率方法在沿海海岛台风阵风预报中的应用试验   总被引:1,自引:0,他引:1  
胡波 《气象科技》2016,44(2):246-251
利用2004—2013年浙江影响台风及9个沿海海岛气象站风力资料,分析了各站阵风系数总体特征,及其与站点纬度、海拔高度和海岸线距离等因子的关系。结果表明,随着平均风速的增大,对应的阵风系数有减少趋势;距离海岸线近的站点和海拔高度小的站点其阵风系数也相对要大些。分析台风参数与阵风系数关系,得出阵风系数与台风7级风圈半径和站点离台风中心距离的比值具有最好相关。利用分位数回归方法建立概率预报模型,试报表明大部分站点阵风的50%和90%概率范围的击中率都符合预期,其波动范围一般在3%以内,模型表现比较稳定,对业务有一定的指导价值。  相似文献   

17.
沿海风工程设计风速中泊松-耿贝尔法的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
每年西北太平洋热带气旋(TC)发生的次数、移动路径和强度都是随机的,我国东南沿海各地每年受TC影响的次数便构成了某种离散型分布,而TC影响下的最大风速则可以构成某种连续型分布。该文采用上海台风研究所提供的1961—2006年TC中心风速和TC影响期间各台站大风资料,利用泊松-耿贝尔联合极值风速计算方法,计算了沿海各气象站TC影响大风的多年一遇风工程设计最大风速。结果表明:当观测资料样本序列较短,特别是像TC这样随机性很强的天气事件,泊松-耿贝尔联合极值算法更具优势;我国沿海地区有53.9%的台站50年一遇最大风速在25 m/s以下,最大风速大于42.5 m/s以上的台站分布于浙江的大陈岛、嵊山、石浦,福建的北茭和台山,广东的遮浪、上川岛和海南的西沙岛,在这些地区进行风电开发风险较大,应引起足够重视。  相似文献   

18.
山东省沿海冬春季海陆大风对比分析   总被引:1,自引:0,他引:1  
利用山东省划分的沿海12个海区代表站和部分海岛站资料,6艘渤海和黄海救助船资料,验证了2010年11月以来冬春季海区大风过程(≥6级)中,烟台北部沿海和威海南部沿海站大风资料的可用性,并对渤海湾、渤海中部海区、黄海北部海区和山东沿海大风进行了对比分析,得到以下结论:(1)渤海湾海区,滨州北部和东营北部沿海站均比海面风速偏小。(2)渤海中部海区,当天气系统为低槽冷锋时,东营东部、潍坊北部、烟台北部和烟台西部沿海站均比海面风速偏小。(3)黄海北部海区,在统计时段内,成山头站非常接近海面风速,其次是长岛县大黑山比海面风速小3 m·s-1左右。  相似文献   

19.
We analyzed the frequency distribution characteristics of wind speeds occurring at different offshore sites within a range of 0–200 km based on the sea surface wind data captured via buoys and oil platforms located along the east coast of Guangdong Province. The results of the analysis showed that average wind speed measured for each station reached a maximum in winter while minima occurred in summer, corresponding to obvious seasonal variation, and average wind speed increased with offshore distance. The prevailing wind direction at the nearshore site is the easterly wind, and the frequency of winds within 6–10 m s–1 is considerable with that of winds at > 10 m s–1. With the increase of the offshore distance, the winds were less affected by the land, and the prevailing wind direction gradually became northerly winds, predominately those at > 10 m s–1. For areas of shorter offshore distance (< 100 km), surface wind speeds fundamentally conformed to a two-parameter Weibull distribution, but there was a significant difference between wind speed probability distributions and the Weibull distribution in areas more than 100 km offshore. The mean wind speeds and wind speed standard deviations increased with the offshore distance, indicating that with the increase of the wind speed, the pulsation of the winds increased obviously, resulting in an increase in the ratio of the mean wind speed to the standard deviation of wind speed. When the ratio was large, the skewness became negative. When a relatively great degree of dispersion was noted between the observed skewness and the skewness corresponding to the theoretical Weibull curve, the wind speed probability distribution could not be adequately described by a Weibull distribution. This study provides a basis for the verification of the adaptability of Weibull distribution in different sea areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号