首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the International Polar Year (IPY), large international research programs provided a unique opportunity for assessing the current state and trends in major components of arctic marine ecosystems at an exceptionally wide spatio-temporal scale: sampling covered most regions of the Canadian Arctic (IPY-Canada??s Three Oceans project), and the coastal and offshore areas of the southeastern Beaufort Sea were monitored over almost a full year (IPY-Circumpolar Flaw Lead project). The general goal of these projects was to improve our understanding of how the response of arctic marine ecosystems to climate warming will alter the productivity and structure of the food web and the ecosystem services it provides to Northerners. The present paper summarizes and discusses six key findings related to primary production (PP), which determines the amount of food available to consumers. (1) Offshore, the warming and freshening of the surface layer is leading to the displacement of large nanophytoplankton species by small picophytoplankton cells, with potentially profound bottom-up effects within the marine food web. (2) In coastal areas, PP increases as favourable winds and the deeper seaward retreat of ice promote upwelling. (3) Multiple upwelling events repeatedly provide food to herbivores throughout the growth season. (4) A substantial amount of pelagic PP occurs under thinning ice and cannot be detected by orbiting sensors. (5) Early PP in the spring does not imply a trophic mismatch with key herbivores. (6) The epipelagic ecosystem is very efficient at retaining carbon in surface waters and preventing its sedimentation to the benthos. While enhanced PP could result in increased fish and marine mammal harvests for Northerners, it will most likely be insufficient for sustainable large-scale commercial fisheries in the Canadian Arctic.  相似文献   

2.
Canadian contributions to International Polar Year (IPY) 2007?C2008 were designed to improve the understanding of climate change impacts and adaptation and to gain insight into issues surrounding community health and well-being in Canada??s arctic. Fifty-two research projects, involving scientists, northern partners and communities, focused on the arctic atmosphere and climate, cryosphere, oceans, sea ice, marine ecosystems, terrestrial ecosystems, wildlife as well as human health and community well-being. Key research findings on these topics are presented in this special issue of Climatic Change. This introductory paper presents an overview of the international and Canadian IPY programs and a summary of Canadian IPY results, including progress made in data management and capacity building. The legacy of IPY in Canada includes expanded international scientific cooperation, meaningful partnerships with northern communities, and more northern residents with research training.  相似文献   

3.
Arctic ecosystems could provide a substantial positive feedback to global climate change if warming stimulates below-ground CO2 release by enhancing decomposition of bulk soil organic matter reserves.Ecosystem respiration during winter is important in this context because CO2 release from snow-covered tundra soils is a substantial component of annual net carbon (C) balance, and because global climate models predict that the most rapid rises in regional air temperature will occur in the Arctic during winter. In this manipulative field study, the relative contributions of plant and bulk soil organic matter C pools to ecosystem CO2 production in mid-winter were investigated. We measured CO2 efflux rates in Swedish sub-arctic heath tundra from control plots and from plots that had been clipped in the previous growing season to disrupt plant activity. Respiration derived from recently-fixed plant C (i.e., plant respiration, and respiration associated with rhizosphere exudates and decomposition of fresh litter) was the principal source of CO2 efflux, while respiration associated with decomposition of bulk soil organic matter was low, and appeared relatively insensitive to temperature. These results suggest that warmer mid-winter temperatures in the Arctic may have a much greater impact on the cycling of recently-fixed, plant-associated C pools than on the depletion of tundra bulk soil C reserves, and consequently that there is a low potential for significant initial feedbacks from arctic ecosystems to climate change during mid-winter.  相似文献   

4.
Blue carbon refers to the considerable amounts of carbon sequestered by mangroves, seagrass beds, tidal marshes and other coastal and marine vegetated ecosystems. At the present time, carbon market mechanisms to compensate those conserving blue carbon ecosystems, and thus reducing carbon emissions, are not yet in place. The ecosystem services provided by coastal vegetated ecosystems extend beyond their carbon storage capacity, and include their contribution to fishery production; shoreline protection; provision of habitat for wildlife and migratory species; flood water attenuation; nutrient cycling, pollution buffering; as well as their cultural, spiritual, subsistence and recreational uses. Because these services are of high economic, social and cultural value, the management and protection of blue carbon ecosystems could build collaboration between climate change and biodiversity practitioners on the national and international level. Such collaboration would also allow for the transfer of lessons learned from coastal management and conservation activities to carbon mitigation projects, and would include the need to work closely together with indigenous peoples and local communities. Resulting management activities on the local level could utilize and strengthen traditional knowledge and management systems related to blue carbon ecosystems, and increase both the resilience of biodiversity and that of coastal communities, as well as provide for long-term storage of blue carbon. While the challenge of scaling up local initiatives remains, some concrete examples already exist, such as the network of locally-managed marine areas (LMMAs) in the Pacific and beyond.  相似文献   

5.
We examined the annual exchange of CO2 between the atmosphere and moist tussock and dry heath tundra ecosystems (which together account for over one-third of the low arctic land area) under ambient field conditions and under increased winter snow deposition, increased summer temperatures, or both. Our results indicate that these two arctic tundra ecosystems were net annual sources of CO2 to the atmosphere from September 1994 to September 1996 under ambient weather conditions and under our three climate change scenarios. Carbon was lost from these ecosystems in both winter and summer, although the majority of CO2 evolution took place during the short summer. Our results indicate that (1) warmer summer temperatures will increase annual CO2 efflux from both moist and dry tundra ecosystems by 45–55% compared to current ambient temperatures; (2) deeper winter snow cover will increase winter CO2 efflux in both moist and dry tundra ecosystems, but will decrease net summer CO2 efflux; and (3) deeper winter snow cover coupled with warmer summer temperatures will nearly double the annual amount of CO2 emitted from moist tundra and will result in a 24% increase in the annual CO2 efflux of dry tundra. If, as predicted, climate change alters both winter snow deposition and summer temperatures, then shifts in CO2 exchange between the biosphere and atmosphere will likely not be uniform across the Arctic tundra landscape. Increased snow deposition in dry tundra is likely to have a larger effect on annual CO2 flux than warmer summer temperatures alone or warmer temperatures coupled with increased winter snow depth. The combined effects of increased summer temperatures and winter snow deposition on annual CO2 flux in moist tundra will be much larger than the effects of either climate change scenario alone.  相似文献   

6.
Managing Arctic marine resources to be resilient to environmental changes requires knowledge of how climate change is affecting marine food webs and fisheries. Changes to fishery resources will have major implications for coastal Indigenous communities whose livelihoods, health, and cultures are strongly connected to fisheries. Understanding these broad social-ecological changes requires a transdisciplinary approach bringing together contrasting and complementary disciplines and ways of knowing. Here, we examine climatic proxies, ecological, and fishery indicators (stable isotopes, fish condition, and lipid content), and interviews with Inuit fishers to assess how marine ecosystem changes have influenced Arctic Char (Salvelinus alpinus) ecology and fisheries over a 30-year time period (1987–2016) in the Kitikmeot region of the Canadian Arctic. Inuit fishers reported several observations of environmental changes, including longer ice-free seasons, warmer ocean temperatures, and the arrival of new marine species. Biophysical data revealed important changes toward earlier dates of ice breakup (>12 days in some areas) and a shift in isotopic niche reflecting a changing Arctic Char diet, with increased contribution of pelagic carbon and higher trophic level prey. Fish condition was improved in years with earlier ice breakup, as observed by both Inuit fishers and biophysical indicators, while lipid content increased through time, suggesting that longer ice-free seasons may have a positive effect on Arctic Char quality as reflected by both fish condition and lipid content. Long-term impacts of continuing climate change, however, such as the northward expansion of boreal species and increasing ocean temperatures, could have negative effects on fisheries (e.g., physiological impairment in fish if temperatures exceed their thermal range). Continuous community-based monitoring that directly informs fisheries management could help communities and managers adaptively, and sustainably, manage in the face of multiple interacting changes in Arctic marine systems.  相似文献   

7.
Spatiotemporal patterns of recent (1979–2008) air temperature trends are evaluated using three reanalysis datasets and radiosonde data. Our analysis demonstrates large discrepancies between the reanalysis datasets, possibly due to differences in the data assimilation procedures as well as sparseness and inhomogeneity of high-latitude observations. We test the robustness of arctic tropospheric warming based on the ERA-40 dataset. ERA-40 Arctic atmosphere temperatures tend to be closer to the observed ones in terms of root mean square error compared to other reanalysis products used in the article. However, changes in the ERA-40 data assimilation procedure produce unphysical jumps in atmospheric temperatures, which may be the likely reason for the elevated tropospheric warming trend in 1979–2002. NCEP/NCAR Reanalysis data show that the near-surface upward temperature trend over the same period is greater than the tropospheric trend, which is consistent with direct radiosonde observations and inconsistent with ERA-40 results. A change of sign in the winter temperature trend from negative to positive in the late 1980s is documented in the upper troposphere/lower stratosphere with a maximum over the Canadian Arctic, based on radiosonde data. This change from cooling to warming tendency is associated with weakening of the stratospheric polar vortex and shift of its center toward the Siberian coast and possibly can be explained by the changes in the dynamics of the Arctic Oscillation. This temporal pattern is consistent with multi-decadal variations of key arctic climate parameters like, for example, surface air temperature and oceanic freshwater content. Elucidating the mechanisms behind these changes will be critical to understanding the complex nature of high-latitude variability and its impact on global climate change.  相似文献   

8.
Canada??s IPY program funded seven marine projects spanning the North American Arctic. Work embraced oceanography, air-sea interactions, storm response, paleo-climate and trace-element chemistry. Notable findings are emerging. Conditions in the Beaufort were unusual in 2007, with very high air pressure bringing strong winds, rapid ice drift, thin winter ice, enhanced shelf-break upwelling and a maximum in freshwater retention in the Beaufort Gyre. A mapping of trace chemicals suggests that Arctic mid-depth circulation may also have reversed. Study of Canadian Arctic through-flow revealed a net annual seawater export of 44,000 cubic kilometres from the Arctic to Baffin Bay. Observations of sea ice, sustained through the IPY, affirmed that ice cover is the key attribute of Arctic seas, with wind as a potent agent in its variation. Surveys have shown that the anthropogenic decline in seawater alkalinity is aggravated in the Arctic by low temperature and low salinity resulting from ice melt. Careful experiments have revealed that Arctic phytoplankton growth is constrained by scarcity of dissolved iron where light levels are low. A manganese fingerprint in sediments has tracked changing sea level during the Ice Age. Sediment-core analysis has revealed the Arctic Oscillation as a dominant cause of long-period climate variations during the Holocene. One project has demonstrated how multi-tasked vessels can maintain a watch on Canada??s Arctic within a reliable affordable logistic framework, while a wave forecast model developed by another for the Beaufort is suitable for operational use.  相似文献   

9.
Summary  The carbon dioxide exchange in arctic and subarctic terrestrial ecosystems has been measured using the eddy-covariance method at sites representing the latitudinal and longitudinal extremes of the European Arctic sea areas as part of the Land Arctic Physical Processes (LAPP) project. The sites include two fen (Kaamanen and Kevo) and one mountain birch ecosystems in subarctic northern Finland (69° N); fen, heathland, and snowbed willow ecosystems in northeastern Greenland (74° N); and a polar semidesert site in Svalbard (79° N). The measurement results, which are given as weekly average diurnal cycles, show the striking seasonal development of the net CO2 fluxes. The seasonal periods important for the net CO2 fluxes, i.e. winter, thaw, pre-leaf, summer, and autumn can be identified from measurements of the physical environment, such as temperature, albedo, and greenness. During the late winter period continuous efflux is observed at the permafrost-free Kaamanen site. At the permafrost sites, efflux begins during the thaw period, which lasts about 3–5 weeks, in contrast to the Kaamanen site where efflux continues at the same rate as during the winter. Seasonal efflux maximum is during the pre-leaf period, which lasts about 2–5 weeks. The summer period lasts 6 weeks in NE Greenland but 10–14 weeks in northern Finland. During a high summer week, the mountain birch ecosystem had the highest gross photosynthetic capacity, GP max, followed by the fen ecosystems. The polar semidesert ecosystem had the lowest GP max. By the middle of August, noon uptake fluxes start to decrease as the solar elevation angle decreases and senescence begins within the vascular plants. At the end of the autumn period, which lasts 2–5 weeks, topsoil begins to freeze at the end of August in Svalbard; at the end of September at sites in eastern Greenland; and one month later at sites in northern Finland. Received March 1, 2000 Revised October 2, 2000  相似文献   

10.
Ecosystem stewardship is a framework for actively shaping trajectories of ecological and social change to foster a more sustainable future for species, ecosystems, and society. We apply this framework to conservation challenges and opportunities in the Arctic, where the rapid pace of human-induced changes and their interactions force us now to consider a new relationship between people and the rest of nature. Biodiversity, which has traditionally been the target of conservation efforts, is increasingly affected by human impacts such as energy demand and industrial development that are motivated more by short-term profits than by concerns for societal consequences of long-term arctic biodiversity change. We posit that effective approaches to conservation must (a) foster both ecosystem resilience and human wellbeing, (b) integrate ecological and social processes across scales, and (c) take actions that shape the future rather than seeking only to restore the past. To this end, we identify progress through actions that have been or could be taken at local, national, and international scales to promote arctic resilience and conservation. A stewardship approach to conservation aims to prevent undesirable changes and prepares for adaptation to rapid and uncertain changes that cannot be avoided and for transformation to avoid or escape undesirable states. The greatest opportunity for arctic stewardship at the local scale may lie in building upon culturally engrained (often indigenous) respect for nature and reliance on local environment, empowering it through knowledge and power sharing with national regulatory frameworks. This, in turn, allows connection of drivers with impacts across scales and raises awareness of the value of human–environment relationships. At national and international scales stewardship provides rules for coordinated action to reconcile local and regional conservation actions with those that are motivated by constraints at the global level, to foster ecosystem integrity and human wellbeing in the face of transformative changes in environment, landscapes, species, and society.  相似文献   

11.
This article investigates whether the European Union-Mauritania fisheries agreement, which allocates part of the Europe's financial contribution to the conservation of marine ecosystems located within the Banc d’Arguin National Park, can be regarded as a payment for ecosystem service. A framework for qualification as such payment scheme was established based on an extensive literature review. The criteria identified for the qualification as a payment to ecosystem service pertain to: (1) the definition of the ecosystem service(s) involved; (2) the mechanism involved by the payment; and (3) the nature of the transaction. Interviews with local beneficiaries and subsequent data analysis led to the conclusion that this mechanism could be regarded as a payment to ecosystem service and so, through the European Union-Mauritania Fisheries agreement, the European Union were investing to protect local fish resources that could be exploited by its fishing fleet. This agreement, involving the first International Payment to Ecosystem Service of this kind, marks an important step towards better consideration of marine conservation in international public policy and foreign fishing policy in particular. However, this payment is small when compared to revenues generated through the exploitation of developing countries’ fishing grounds by fishing countries. Nevertheless it opens the door for more detailed applications of payment to ecosystem service schemes to other ecosystems contexts, and can provide a useful alternative source of financing of marine biodiversity conservation.  相似文献   

12.
Summary Synoptic activity for the Arctic is examined for the period 1952–1989 using the National Meteorological Center sea level pressure data set. Winter cyclone activity is most common near Iceland, between Svalbard and Scandinavia, the Norwegian and Kara seas, Baffin Bay and the eastern Canadian Arctic Archipelago; the strongest systems are found in the Iceland and Norwegian seas. Mean cyclone tracks, prepared for 1975–1989, confirm that winter cyclones most frequently enter the Arctic from the Norwegian and Barents seas. Winter anticyclones are most frequent and strongest over Siberia and Alaska/Yukon, with additional frequency maxima of weaker systems found over the central Arctic Ocean and Greenland.During summer, cyclonic activity remains common in the same regions as observed for winter, but increases over Siberia, the Canadian Arctic Archipelago and the Central Aretic, related to cyclogenesis over northern parts of Eurasia and North America. Eurasian cyclones tend to enter the Aretic Ocean from the Laptev Sea eastward to the Chukchi Sea, augmenting the influx of systems from the Norwegian and Barents seas. The Siberian and Alaska/Yukon anticyclone centers disappear, with anticyclone maxima forming over the Kara, Laptev, East Siberian and Beaufort seas, and southeastward across Canada. Summer cyclones and anticyclones exhibit little regional variability in mean central pressure, and are typically 5–10 mb weaker than their winter counterparts.North of 65°N, cyclone and anticyclone activity peaks curing summer, and is at a minimum during winter. Trends in cyclone and anticyclone activity north of 65°N are examined through least squares regression. Since 1952, significant positive trends are found for cyclone numbers during winter, spring and summer, and for anticyclone numbers during spring, summer and autumn.With 11 Figures  相似文献   

13.
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.  相似文献   

14.
冬季北极海冰与中国同期气温的关系   总被引:3,自引:0,他引:3  
采用Hadley中心的海冰密集度资料和中国160站气温资料,对冬季北极海冰变化的主要模态进行了分析,定义了5个关键海区,重点讨论了冬季北极海冰异常与中国冬季气温的关系.结果表明,冬季北极海冰变化主要表现为第一模态,即太平洋、大西洋的海冰反位相分布.海冰变化的关键区域为区域Ⅰ巴伦支海、区域Ⅱ格陵兰海、区域Ⅲ戴维斯海峡、区...  相似文献   

15.
采用Hadley中心的海冰密集度资料和中国160站气温资料,对冬季北极海冰变化的主要模态进行了分析,定义了5个关键海区,重点讨论了冬季北极海冰异常与中国冬季气温的关系。结果表明,冬季北极海冰变化主要表现为第一模态,即太平洋、大西洋的海冰反位相分布。海冰变化的关键区域为区域Ⅰ巴伦支海、区域Ⅱ格陵兰海、区域Ⅲ戴维斯海峡、区域Ⅳ白令海以及区域Ⅴ鄂霍次克海。中国冬季平均气温、冬季最低气温、冬季最高气温均与北极关键海区的海冰异常有显著相关,但是与其对应的海区有所不同。  相似文献   

16.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   

17.
Long-term data are critically important to science, management, and policy formation. Here we describe a number of data collections from arctic Canada that monitor vertebrate population trends of freshwater and marine fish, marine birds, marine and terrestrial mammals. These time series data cover the last ca. 30?years and capture a period from the onset of global changes affecting the Arctic up to recent years with a rapid increase in temperature. While many of these data collections were initiated through a variety of government and university programs, they also include a surge in polar research launched with the recent International Polar Year (2007?C2008). We estimated the long-term vertebrate index from our data that summarizes various taxa abundance trends within a global context and observed a continuous decline of about 30?% in population abundance since the 1990s. Though most data collections are biased towards few taxa, we conduct time-series analyses to show that the potential value of long-term data emerges as individual monitoring sites can be spread across space and time scales. Despite covering a handful of populations, the different time series data covered a large spectrum of dynamics, cyclic to non-cyclic, including coherence with the North Atlantic Oscillation, lag effects, and density dependence. We describe a synthesis framework to integrate ecological time-series research and thereby derive additional benefits to management, science, and policy. Future requirements include: (1) continuation of current observation systems; (2) expansion of current monitoring sites to include additional trophic links and taxonomic indicators; (3) expansion beyond the existing program to include greater spatial coverage into less-sampled ecosystems and key representative locations; and (4) integration of circumpolar observations and comprehensive analyses. Development of a circumpolar observation system is necessary for innovative science, large-scale adaptive management, and policy revision essential to respond to rapid global change.  相似文献   

18.
Many researchers and policymakers from various disciplines highlight the role of urban biodiversity in delivering ecosystem services to enhance human wellbeing in a rapidly urbanising world. This suggests powerful synergies between approaches that are often disciplinarily separated, aiming either at human wellbeing or biodiversity conservation. Strategies towards liveable and biodiverse cities would gain support from insights into the people-biodiversity interface in cities. Yet, the question of which scale of biodiversity (from ecosystems to genes) benefits urban people in general and different socio-cultural groups in particular, remains largely open. To assess the current scientific knowledge as well as potential for further research, we systematically reviewed literature on people’s perception and valuation of urban biodiversity (200 studies). We also quantified the outcomes of studies in terms of the effects of biodiversity on valuation for studies that addressed biodiversity valuation below the ecosystem scale. We found that the current literature is critically biased in four ways. (1) Most studies cover temperate climates, while regions with the most pronounced urban growth are underrepresented. (2) Studies focus on urban forests and parks while important informal greenspaces are largely neglected. (3) Biodiversity is mostly addressed at the ecosystem scale (habitat or land-use types) while diversity at the species community or gene scale—key issues in biodiversity conservation—is covered to a much lesser extent. Most studies below the ecosystem scale show positive biodiversity effects, but universal patterns are not apparent due to the scarcity and low comparability of research. (4) Almost no studies consider the cultural diversity of urban residents by systematically targeting people from different socio-economic and cultural backgrounds or specific age groups. Our review reveals critical knowledge gaps about the people-biodiversity interface in cities, both in approaching cultural and biological diversity (‘biocultural diversity’). This shows unexploited opportunities and future directions in linking usually separated strategies on enhancing human wellbeing and biodiversity conservation in sustainable cities.  相似文献   

19.
The spatial and temporal consistency of seasonal air temperature and precipitation in eight widely used gridded observation-based climate datasets (CANGRD, CRU-TS3.1, CRUTEM4.1, GISTEMP, GPCC, GPCP, HadCRUT3, and UDEL) and eight reanalyses (20CR, CFSR, ERA-40, ERA-Interim, JRA25, MERRA, NARR, and NCEP2) was evaluated over the Canadian Arctic for the 1950–2010 period. The evaluation used the CANGRD dataset, which is based on homogenized temperature and adjusted precipitation from climate stations, as a reference. Dataset agreement and bias were observed to exhibit important spatial, seasonal, and temporal variability over the Canadian Arctic with the largest spread occurring between datasets over mountain and coastal regions and over the Canadian Arctic Archipelago. Reanalysis datasets were typically warmer and wetter than surface observation-based datasets, with CFSR and 20CR exhibiting biases in total annual precipitation on the order of 300?mm. Warm bias in 20CR exceeded 12°C in winter over the western Arctic. Analysis of the temporal consistency of datasets over the 1950–2010 period showed evidence of discontinuities in several datasets as well as a noticeable increase in dataset spread in the period after approximately 2000. Declining station networks, increased automation, and the inclusion of new satellite data streams in reanalyses are potential contributing factors to this phenomenon. Evaluation of trends over the 1950–2010 period showed a relatively consistent picture of warming and increased precipitation over the Canadian Arctic from all datasets, with CANGRD giving moistening trends two times larger than the multi-dataset average related to the adjustment of the station precipitation data. The study results indicate that considerable care is needed when using gridded climate datasets in local or regional scale applications in the Canadian Arctic.  相似文献   

20.
IPCC向全球正式发布了其最新的《气候变化与土地特别报告》(SRCCL),从陆气相互作用、荒漠化、土地退化、粮食安全、综合变化和协同性、可持续土地管理等方面评估气候变化与土地的相互关联。报告是在IPCC 3个工作组共同主导下,首次系统评估气候变化与陆面过程和土地利用/土地管理之间的相关作用。报告的评估结果表明,全球陆地增温幅度接近全球海陆平均值的两倍,气候变化加重了综合土地压力,并严重影响全球粮食安全,而全球很多区域的极端天气气候事件频率/强度持续增加,加重了农业生产的灾害风险和损失。采取行业间和国家间协同一致的行动,通过可持续土地管理,可以有效地适应和减缓气候变化,同时减轻土地退化、荒漠化和粮食安全的压力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号