首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
Long-term measurements of light hydrocarbons(C2–C5 HCs) were performed in the courseof the EUROTRAC sub-project TOR (Tropospheric Ozone Research) in thesouthern part of the Black Forest in southwest Germany. The measurementscover a time period of five years (January 1989–January 1994) and theair samples were analyzed onsite by an automated GC-system. Pronouncedannual cycles with maxima in late winter and minima in late summer wereobserved in the case of the slowly reacting hydrocarbons ethane, propane andacetylene, reflecting the fact that the seasonal variation of these speciesis photochemically driven. For the shorter lived compounds the seasonalvariations are considerably weaker, connected with a stronger scatter of theindividual measurements, which is caused by different distances to theirmain sources for different wind vectors as well as by varying sourcestrengths. From a detailed characterization of the hydrocarbon patterns theinfluence of two different sources could be distinguished. An extrapolationto photochemical age of zero and completion of our data with those from aspeciated VOC inventory yields an estimated [VOC]/NOx sourceratio for Schauinsland of 5 [ppbC/ppb]. Comparable[VOC]/NOx ratios are observed in automobile exhaust gasesunder low speed conditions, which points to the important role of trafficunder conditions, when freshly polluted air masses from a near-by city areadvected to the site. From an investigation of the photochemical age of theadvected air masses it becomes clear that there must exist biogenic sourcesof light olefins in the vicinity of the observatory during the vegetationperiod. For propene and the butenes we are able to estimate a lower limit oftheir contributions in terms of reactivity to the total reactivity( [HC](i) k_OH(i),i=C2-C5) of the measured hydrocarbons. Forlowest pollution levels in summer (acetylene <300 ppt, about 40%of the summer values) this source is found to be responsible for15–20% of the total C2–C5reactivity observed at Schauinsland. On the average, this source accountsfor 5–10% of the total C2–C5reactivity.  相似文献   

2.
Deforestation in Brazilian Amazonia is a significant source of greenhouse gases today and, with almost 90% of the originally forested area still uncleared, is a very large potential source of future emissions. The 1990 rate of loss of forest (13.8 × 103 km2/year) and cerrado savanna (approximately 5 × 103 km2/year) was responsible for releasing approximately 261 × 106 metric tons of carbon (106 t C) in the form of CO2, or 274–285 × 106 t of CO2-equivalent C considering IPCC 1994 global warming potentials for trace gases over a 100-year horizon. These calculations consider conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest, and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as net committed emissions, or the gases released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. For low and high trace gas scenarios, respectively, 1990 clearing produced net committed emissions (in 106 t of gas) of 957–958 for CO2, 1.10–1.42 for CH4, 28–35 for CO, 0.06–0.16 for N2O, 0.74–0.74 for NOx and 0.58–1.16 for non-methane hydrocarbons.  相似文献   

3.
A field study of trace gas emissions from biomass burning in Equatorial Africa gave methyl chloride emission ratios of 4.3×10–5±0.8×10–5 mol CH3Cl/mol CO2. Based on the global emission rates for CO2 from biomass burning we estimate a range of 226–904×109 g/y as global emission rate with a best estimate of 515×109 g/y. This is somewhat lower than a previous estimate which has been based on laboratory studies. Nevertheless, our emission rate estimates correspond to 10–40% of the global turnover of methyl chloride and thus support the importance of biomass burning as methyl chloride source. The emission ratios for other halocarbons (CH2Cl2, CHCl3, CCl4, CH3CCl3, C2HCl3, C2Cl4, F-113) are lower. In general there seems to be a substantial decrease with increasing complexity of the compounds and number of halogen atoms. For dichloromethane biomass burning still contributes significantly to the total global budget and in the Southern Hemisphere biomass burning is probably the most important source for atmospheric dichloromethane. For the global budgets of other halocarbons biomass burning is of very limited relevance.  相似文献   

4.
We measured CO2, CO, CH4, H2, and NO2 in air masses polluted by savanna fires over Côte d'Ivoire, western Africa. Elevated concentrations of these trace gases were found in fire plumes and also in extensive haze layers. Trace gas mixing ratios ranged as high as 605 ppmv for CO2, 14.8 ppmv for CO, 2.7 ppmv for CH4, 4.2 ppmv for H2, and 25 ppbv for NO2. We compare our emission ratios to those obtained in previous field and laboratory studies. The emission ratios, expressed as an average and as a range or as an average only, were: dCO/dCO2 5.3×10–2 (3–18×10–2); dCH4/dCO 5.3×10–2; dH2/dCO 2.4×10–1 and dNO2/dCO2 1.8×10–4 (1.5–2.2×10–4). The values found match those found during similar measurements, though our results point to rather vigorous burning in the savanna of western Africa.  相似文献   

5.
Results of regular measurements during 1992–1995 of hydrocarbons and carbonyl compounds for a number of rural European monitoring sites are presented. The measurements are part of the EMEP programme for VOC measurements in Europe. In addition, several years of regular measurements are included from the Norwegian stations Birkenes at the south coast, and Zeppelin Mountain on Spitsbergen in the Arctic. The sampling frequency has been about twice per week throughout the years, implying that a substantial amount of measurement data are available. Almost all the chemical analyses have been performed by one laboratory, the EMEP Chemical Co-ordinating Centre located at NILU, which avoids problems of intercomparison and intercalibration among different laboratories. For the measured concentrations both seasonal and geographical variations are shown and discussed. The diurnal cycles of the hydrocarbon concentrations were studied in detail at one site, where the grab samples by EMEP where compared with a parallel continuous sampler, operated by EMPA, Switzerland. Hydrocarbons linked to natural gas and fuel evaporation become well mixed into the Arctic in the winter, whereas combustion products show a latitudinal gradient. The sum of oxygenated species constitutes about 5–15% of the sum of C2–C5 hydrocarbons in winter. In summer they are almost equal in magnitude, consistent with an increasing oxidation of hydrocarbons.  相似文献   

6.
Organic matter in tropospheric aerosols is derived from two major sources and is admixed depending on the geographic area. These sources are biogenic detritus and anthropogenic emissions. The biogenic materials in the solvent-extractable organic matter are comprised predominantly of higher plant waxes, with lesser amounts of resin and microbial detritus and the anthropogenic components are primarily vehicular emissions (e.g. oils, soot, etc.) and input from combustion (e.g. charcoal, thermally-altered biogenic matter, etc.). Both biogenic detritus and anthropogenic emissions contain organic compounds (C12–C40+), which can be identified with unique and distinguishable distribution patterns. Molecular composition analysis has been applied to such extracts after suitable chemical separation into subfractions (i.e. hydrocarbons, ketones, aldehydes, carboxylic acids, alcohols, and wax esters). Both homologous compound series and specific natural products (e.g. phytosterols, terpenes, etc.) are identified as molecular markers.Aerosols from rural and remote areas in the western United States, South America, Nigeria and Australia have been analyzed and all contained predominantly plant waxes. The loadings of hydrocarbons ranged approximately from 10–1400 ng/m3 of air, of fatty acids from 10–450 ng/m3 and of fatty alcohols from 10–1650 ng/m3. These higher molecular weight lipids primarily from flora comprise a major component of the organic carbon in rural and remote aerosols. They are thus important indicators for regional biogenic sources in the global cycling of organic carbon.Presented in part at the International Symposium on Biosphere-Atmosphere Exchange, Mainz, E.R. Germany, March 16–22, 1986, for Part IV see Simoneit et al. (1988) Atmos. Environ. 22, 983–1004.  相似文献   

7.
Aerosol chemical composition and trace gas measurements were made at twolocations on the northeastern peninsula of Tenerife during the ACE-2HILLCLOUD experiment, between 28 June and 23 July 1997. Measurementswere made of coarse (#gt;2.5 m aerodynamic diameter) and fine (#lt; 2.5m) aerosol Cl, NO3 ,SO4 2–, non-sea saltSO4 2– (NSSS),CH3SO3 (MSA) andNH4 +, and gas phase dimethylsulphide (DMS), HCl,HNO3, SO2, CH3COOH, HCOOH andNH3. Size distributions were measured using a cascadeimpactor. Results show that in marine air masses NSSS and MSA wereformed via DMS oxidation, with additional NSSS present in air massescontaining a continental component. Using a Eulerian box model approachfor aerosols transported between upwind and downwind sites, a mean NSSSproduction rate of 4.36 × 10–4 gm–3 s–1 was calculated for daytimeclear sky periods (highest insolation), with values for cloudy periodsduring daytime and nighttime of 3.55 × 10–4 and2.40 × 10–4 g m–3s–1, respectively. The corresponding rates for MSA were6.23 × 10–6, 8.49 × 10–6and 6.95 × 10–6 g m–3s–1, respectively. Molar concentration ratios forMSA/NSSS were 8.7% (1.8–18.2%) and 1.9%(1.3–3.5%) in clean and polluted air masses, respectively.Reactions occurring within clouds appeared to have a greater influenceon rates of MSA production, than of NSSS, while conversely daytime gasphase reactions were more important for NSSS. For MSA, nighttimein-cloud oxidation rates exceeded rates of daytime gas phase productionvia OH oxidation of DMS. NSSS, MSA and ammonium had trimodal sizedistributions, with modes at 0.3, 4.0 and >10.0 m (NSSS andNH4 +), and 0.3, 1.5 and 4.0 m (MSA). Nosignificant production of other aerosol species was observed, with theexception of ammonium, which was formed at variable rates dependent onneutralisation of the aerosol with ammonia released from spatiallynon-uniform surface sources. Seasalt components were mainly present incoarse particles, although sub-micrometre chloride was also measured.Losses by deposition exceeded calculated expectations for all species,and were highest for the seasalt fraction and nitrate.  相似文献   

8.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   

9.
In 1997 and 1998 several field campaigns for monitoring non-methane volatile organic compounds (NMVOCs) and nitrogen oxides (NOx) were carried out in a road traffic tunnel and in the city center of Wuppertal, Germany. C2–C10 aliphatic and aromatic hydrocarbons were monitored using a compact GC instrument. DOAS White and long path systems were used to measure aromatic hydrocarbons and oxygenated aromatic compounds. A formaldehyde monitor was used to measure formaldehyde. Chemiluminescence NO analysers with NO2 converter were used for measuring NO and NO2. The high mixing ratios of the NMVOCs observed in the road traffic tunnel, especially 2.9 ppbv phenol, 1.5ppbv para-cresol and 4.4 ppbv benzaldehyde, in comparison with themeasured background concentration clearly indicate that these compounds were directly emitted from road traffic. Para-Cresol was for the first timeselectively detected as primary pollutant from traffic. From the measured data a NMVOC profile of the tunnel air and the city air, normalised to benzene (ppbC/ppbC), was derived. For most compounds the observed city air NMVOC profile is almost identical with that obtained in the traffic tunnel. Since benzene originates mainly from road traffic emission, the comparison of the normalised emission ratios indicate that the road traffic emissions in Wuppertal have still the largest impact on the city air composition, which is in contrast to the German emission inventory. In both NMVOC profiles, aromatic compounds have remarkably large contributions of more than 40 ppbC%. In addtion, total NMVOC/NOx ratios from 0.6 up to 3.0ppbC/ppb in the traffic tunnel air and 3.4± 0.5 in the city air of Wuppertal were obtained. From the observed para-cresol/toluene and ortho-cresol/toluene ratios in the city air, evidence was found thatalso during daytime NO3 radical reactions play an important role in urban air.  相似文献   

10.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

11.
The annual trace gas emissions from a West African rural region were calculated using direct observations of gas emissions and burning practices, and the findings compared to the guidelines published by the IPCC. This local-scale study was conducted around the village of Dalun in the Northern Region of Ghana, near the regional capital of Tamale. Two types of fires were found in the region – agricultural fires andwildfires. Agricultural fires are intentionally set in order to remove shrub and crop residues; wildfires are mostly ignited by herders to remove inedible grasses and to promote the growth of fresh grass. An agricultural fire is ignited with a fire front moving against the wind (backfire), whereas a wildfire moves with the wind (headfire). Gas emissions (CO2, CO and NO) weremeasured by burning eight experimental plots, simulating both headfires and backfires. A common method of evaluating burning conditions is to calculate modified combustion efficiency (MCE), which expresses the percentage of the trace gases released as CO2. Modified combustion efficiency was95% in the wildfires burned as headfires, but only 90% in the backfires.The burned area in the study region was determined by classifying a SPOT HRV satellite image taken about two months into the dry season. Fires were classified as either old burned areas or new burned areas as determined by the gradient in moisture content in the vegetation from the onset of the dry season. Classified burned areas were subsequently divided into two classes depending on whether the location was in the cultivated area or in the rangeland area, this sub-classification thus indicating whether the fire had been burned as a backfire or headfire. Findings showed that the burned area was 48% of the total region, and that the ratio of lowland wildfiresto agricultural fires was 3:1. The net trace gas release from the classified vegetation burnings were extrapolated to 26–46×108 gCO2, 78–302×106 g CO,17–156×105 g CH4,16–168×105 g NMHC and 11–72×103 NOx. Calculation of the emissionsusing proposed IPCC default values on burned area and average biomass resulted in a net emission 5 to 10 times higher than the measured emission values. It was found that the main reason for this discrepancy was not the emission factorsused by the IPCC, but an exaggerated fuel load estimate.  相似文献   

12.
C2–C6 Nonmethane hydrocarbons (NMHC) and radioactive continental tracers were measured during two oceanographic cruises, in June 1982 in the Mediterranean and Red Sea, and in November 1982 across the North Atlantic and South Pacific oceans. Typical concentrations in marine atmosphere are between 0.05 and 0.2 ppbv. Owing to their similar lifetimes, propane and radon-222 are found to be well correlated. This relationship establishes that propane is mainly produced over lands and enables us to estimate its continental source strength at about 60×106 tons of carbon per year.Also at Université de Picardie  相似文献   

13.
Estimates of the Chemical Budget for Ozone at Waliguan Observatory   总被引:6,自引:0,他引:6  
Waliguan Observatory (WO) is an in-land Global Atmosphere Watch (GAW) baseline station on the Tibetan plateau. In addition to the routine GAW measurement program at WO, measurements of trace gases, especially ozone precursors, were made for some periods from 1994 to 1996. The ozone chemical budget at WO was estimated using a box model constrained by these measured trace gas concentrations and meteorological variables. Air masses at WO are usually affected by the boundary layer (BL) in the daytime associated with an upslope flow, while it is affected by the free troposphere (FT) at night associated with a downslope flow. An anti-relationship between ozone and water vapor concentrations at WO is found by investigating the average diurnal cycle pattern of ozone and water vapor under clear sky conditions. This relationship implies that air masses at WO have both the FT and BL characteristics. Model simulations were carried out for clear sky conditions in January and July of 1996, respectively. The chemical characteristics of mixed air masses (MC) and of free tropospheric air masses (FT) at WO were investigated. The effects of the variation in NOx and water vapor concentrations on the chemical budget of ozone at WO were evaluated for the considered periods of time. It was shown that ozone was net produced in January and net destroyed in July for both FT and MC conditions at WO. The estimated net ozone production rate at WO was –0.1 to 0.4 ppbv day–1 in FT air of January, 0.0 to 1.0 ppbv day–1 in MC air of January, –4.9 to –0.2 ppbv day–1 in FT air of July, and –5.1 to 2.1 ppbv day–1 in MC air of July.  相似文献   

14.
Local free convection scaling is one of the obvious triumphs of boundary-layer similarity theory. In free convection, there is no dynamic velocity scale; the sensible and latent heat fluxes, therefore, scale directly with the temperature and humidity structure parameters C t 2 and C q 2. By using scintillation to measure the refractive index structure parameter C n 2 at two electromagnetic (EM) wavelengths, we can obtain C t 2 and C q 2 and, thus, in effect, measure path-averaged values of the sensible and latent heat fluxes. Here I describe this so-called two-wavelength method for free convection, derive quantitative guidelines for optimizing the method, and evaluate its potential accuracy. I show that the two-wavelength method works best when one EM wavelength is in the visible or infrared region and the other is in the millimeter or radio region. When the Bowen ratio is between -5 and -0.1 or between 0.1 and 5, the expected accuracy of the measured fluxes is ±10–20% — typical of what is possible with eddy-correlation measurements. With the two-wavelength method, however, the fluxes represent spatial averages.  相似文献   

15.
The turbulent heat flux was measured with two instruments simultaneously over the Baltic Sea by means of the eddy-correlation method. In one observational period, a small but noticeable divergence in heat flux was found, which may be explained by the advection of colder air. The parameterization of heat flux by the bulk method leads to a value for C Hof 1 × 10–3.  相似文献   

16.
Air-sea bulk transfer coefficients in diabatic conditions   总被引:13,自引:0,他引:13  
On the basis of recent data for the roughness Reynolds number of the sea surface, and using the Owen-Thomson theory on the transfers of heat and mass between a rough surface and the flow above it, the bulk transfer coefficients of the sea surface have been estimated. For a reference height of 10 m, the neutral-lapse transfer coefficient for water vapor is larger by only a few percent than that for sensible heat. When the wind speed at the 10-m height is u 10>3 m s–1, the coefficient for sensible heat C H is larger by about 10% than that for momentum C D . For u 10<5 m s–1, however, the value of C D exceeds the value of C H , and for u 10=15 m s–1 it is shown that C H 0.8C D . It may be also proposed that 103 C D =1.11 to 1.70, 103 C E =1.18 to 1.30, and 103 C H =1.15 to 1.26 for a range of u 10=4 to 20 m s–1. A plot of diabatic transfer coefficients versus wind speed is obtained by using a parameter of the sea-air temperature difference. For practical purposes, the coefficients are approximated by empirical formulae.  相似文献   

17.
Simultaneous measurements of ozone and ozoneprecursors were made during a field campaign atSchauinsland in the Black Forest and in the valleynorth of Schauinsland that channels the flow ofpolluted air from the city of Freiburg to the site.From the decay of hydrocarbons and NOx between the twomeasuring sites and the known rate coefficients, theconcentration of OH radicals was calculated. From abudget analysis of OH and HOx it is concluded that therelatively high OH concentrations (5–8 ×106cm-3) in the presence of high NO2concentrations cannot be explained by the knownprimary sources. The budget can be closed if efficientrecycling of OH via HO2 is assumed to occur andthat, based on the measured hydrocarbons, 2 HO2molecules are formed for each OH radical that reactswith a hydrocarbon molecule. This assumption is inaccordance with the budget of Ox obtained from ourmeasurements and with results from earliermeasurements of alkylnitrates and peroxy radicals atSchauinsland. A possible conclusion is that the decayof precursors and production of photooxidants in urbanplumes proceeds at a faster rate than is currentlyassumed. The potential role of biogenichydrocarbons for the radical budget is alsodiscussed.  相似文献   

18.
To systematically explain relations between light hydrocarbons, CO, and CO2 concentrations/emissions of biomassburning, we measured concentrations/emissions of carbon gases – CO,CO2, light hydrocarbons (CH4, C2H6,C2H4, C2H2, C3H8, C3H6,n-C4H10, i-C4H10, n-C5H12,i-C5H12), and THC (total hydrocarbon) – in the burning of dead plant material, mainly Imperata grass, byclosed-chamber experiments and by time-series analyses of gas concentrations in combustion plumes in relatively efficient and inefficient combustion situations. Concentrations of hydrocarbons measured were well correlated to [CO] although [C2H2] was exceptionally well correlated to[CO2]. The phase diagrams (relation between [CO]/ [CO2] and [hydrocarbon]/ [CO2]) obtained by the time-seriesexperiments well illustrated the variation in the overall emission rates of the closed-chamber experiments. The higher rates of decrease in hydrocarbon concentration with increasing carbon number in the efficient case compared with the inefficient case probably reflected the rate of oxidation and the amount of radicals. The overall concentrations (or emissions) of C2H4 and C3H6 were higher thanthose of C2H6 and C3H8, suggesting a linkage to mechanisms in whichthe predominant path of hydrocarbon oxidation is through the degradation of alkyl radicals, which can be immediately converted into or formed from alkenes. For C3 and C4 species, normal-chain species hadhigher emissions than iso-chain species under lower combustion efficiency. This may be attributable to the presence of tertiary C–H bonds in iso-species,which show more reactivity in the abstraction of H than secondary C–H bonds unless the carbon number is large.  相似文献   

19.
Experiments have been performed to investigate whether the process of freezing during riming in clouds may induce oxidation of dissolved SO2 to SO 4 2– . The experiments were conducted in a cold room at varying temperatures between –6 and –15 °C. Solutions containing dissolved SO2 and NH4OH in various proportions, in the range of concentrations between 3×10–5 and 10–3 M, were sprayed. Rime was collected on a rotating cylinder and analyzed. Absorption of oxygen from laboratory air was prevented, except in the spray, to avoid spurious oxidation. Blank experiments were made at +3 to +6 °C. The results indicate clearly that, as the dominant cation becomes NH 4 + rather than H+, substantial oxidation of S(IV) occurs during riming. This is consistent with redox reactions taking place as a result of charge separation at the ice-water interface during freezing.  相似文献   

20.
Heat transfer was studied between intact leaves of various sizes and shapes in vivo under free and forced air conditions. Use of a wind tunnel and a microwave transmitter to heat the leaves facilitated measurements of convective, along with radiative and evaporative, heat losses from plant leaves. Knowledge of input energy, analysis of cooling curves, and established formulae, respectively, formed the basis of the steady-state, unsteady-state, and analytical methods for the determination of heat transfer coefficients.Typical values of steady-state free convection coefficients for Peperomia obtusifolia varied from 1.5 × 10–4 to 1.9 × 10–4 cal cm–2 s–1 C–1 as the temperature difference was increased from 5.9 to 9.6°C, whereas the forced convection coefficient was found to be 4.2 × 10–4 cal cm–2 s–1 C–1 at 122 cm s–1 wind velocity. For egg-plant, this value was about 9 × 10–4 cal cm–2 s–1 C–1 at 488 cm s–1 wind velocity. Convection coefficients as determined under steady-state conditions are compared with those of the unsteady-state and with analytical values for a single leaf and leaves of three different plants. In general, experimental values were found to be higher than the analytical ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号