首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
陈为超  范雪波 《气象科技》2021,49(5):693-696
在湿度传感器检定过程中,除露点仪和温湿度箱引起检定结果的不确定度外,检定条件、操作不规范也会给检定结果带来附加误差。本文通过对标准器的各湿度点测得值标准偏差、露点仪工作时的热效应、掠过露点传感器的流量变化、露点仪最佳工作环境等进行了实际测试,结合湿度传感器测试历史资料,进行了综合分析。结果表明:(1)露点仪露点传感器的过流孔正对气流方向时,同温度下露点温度测得值偏高,露点仪测量的相对湿度偏小,否则会偏大。(2)在环境温度为20℃时,露点仪在各个湿度点上的n次测量值的标准偏差(离散性)最小。(3)露点仪的温度传感器在吸入式温湿度箱中,安装于露点传感器前端4cm和后端4cm时,其后端测得值比安装在前端测得值的最大值偏高0.45℃,相对湿度偏高0.5%。(4)各湿度点上的稳定时间(当箱内湿度达到设定值并趋于稳定后)应大于或等于20s时,露点仪和被检湿度传感器采集到的标准值和测量值才真实。  相似文献   

2.
湿度测量技术繁多,露点测湿技术具有较大的优势,基于露点测湿技术设计的仪器能在全量程内达到较高准确度。本文以《气象仪器观测方法指南》中公布的饱和水汽压计算公式为基础,结合误差传递理论,计算得到不同等级露/霜点温度标准不确定度下的相对湿度标准不确定度,以此探究露点测湿技术在准确度上的优势。结果表明:在-60~60℃的全温度范围内,露点仪相对湿度测量标准不确定度在低温高湿情况下较大;当环境温度和露/霜点测量标准不确定度均为0.1℃时,相对湿度测量标准不确定度最大不超过2.0%,满足《气象仪器观测方法指南》中对湿度标准器标准不确定度最低要求;当环境温度和露/霜点测量标准不确定度分别为0.3℃(0.5℃)和0.1℃时,相对湿度测量标准不确定度最大不超过4.3%(7.0%)。可见低温情况下,露点仪相对湿度测量标准不确定度优势明显。  相似文献   

3.
超声测风仪因启动风速小、无转动部件、不破坏风场、测量精度高等特点,适用于多种行业的测风需求。超声波测风的相关检定规程当前在国内尚未正式制定。本文借鉴风杯检定规程所选择的风速测试点,在HDF-720低速回路风洞中,对超声测风仪在不同角度下进行了测试数据统计分析。结果表明:超声测风仪可以安装在工作段面较大的风洞中进行测试,由于超声探头存在阴影效应,对于同一风速,不同角度上的测量结果稍有差异,而且不同风速对应的差异也不同。利用超声测风仪进行风速实时测量时,必须结合上述测试分析,按照超声传感器的安装角度,对测量值进行相应修正。  相似文献   

4.
汪玮  张世国  章超  方海涛  王敏 《气象科技》2020,48(2):163-170
从系统测量原理、组成结构、计算过程及测量效果等方面介绍了一种自行研制的透射式能见度测量系统。该系统使用白色LED光源,实现发散角为1mrad的平行光路;利用积分球进行分光监控以补偿光能量变化;使用非球面镜实现全光斑接收。系统与积分浊度计在2~10km量程内能见度测试误差小于10%。从透射式能见度测量原理与计算过程,分析了影响系统测量性能的因素。结果显示定标准确性、测量线性度与系统稳定性是影响系统测量性能的主要因素,同时给出了该系统的定标准确性、测量线性度与系统稳定性的评估方法及评估数据,验证了该系统的测量性能。  相似文献   

5.
基于高性能的TI F2812 DSP处理器,设计了一类简易的超声波流量计.提出了发射探头在上,下方2个接收探头的三角结构,使得顺逆流时间可以同时测量,避免了测量不同步引入的误差.通过添加一个小键盘和液晶显示单元使整个装置小巧便于使用.另外,还给出了详细的硬件电路设计.实验结果表明该流量计能够用于对流体的测量.  相似文献   

6.
杨云  权继梅  丁蕾 《气象科技》2012,40(5):707-712
2010年中国气象局建立了气象行业光合有效辐射和紫外辐射测量标准.标准建成后,标准器的各项技术性能指标必须经过实际测试来验证.通过对光谱辐射计的波长精密度、准确度、杂散光、重复性、稳定性、探头余弦响应等参数的测试验证,以及对整个标准的测量误差来源及不确定度的分析和评定,得以验证紫外辐射测量标准DTMc300双单色仪光谱辐射计满足世界气象组织(WMO)相关规定的技术指标要求.  相似文献   

7.
美国国家天气局的技术服务办公室下设有一测试和评估处,其主要任务是对国家天气局所使用而研制的仪器装备的性能及其观测方法和程序进行实验,通过实验确定是否完垒适用于日常业务使用。而这项任务是通过它的测试基地——斯特林研究发展中心来完成的。此中心设在弗吉尼亚州的斯特林,面积约400英亩(1.62平方公里)。工作人员共35人。下分三个科:(1)观测技术发展和实验科,主要是研究自动气象观测,并对测量气象参数的新技术进行评价。(2)功能实验和测试科,主要是对国家天气局已在使用或建议国家天气局使用的装备进行实验测试,找出其在使用和应用过程中的问题;确定新装备在业务环境中的观测精度;管理此中心的自动  相似文献   

8.
为了进一步验证深圳市气象局自主研发的雷电仿真评估软件仿真结果的准确性,进行了一次实验室内雷电流冲击钢筋框架的实验。初步推断造成测量结果偏差的原因是由于测量探头、冲击源以及冲击电流引入线路的屏蔽效能所致,并通过改进试验方法初步验证了推断结论有一定的正确性,为实验室直击雷测试实验的测量方法积累了经验。  相似文献   

9.
车载探测系统在近地面污染监测中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
魏强  赵增亮 《气象科技》2003,31(1):62-64,F003
文章介绍了车载粒子探测系统所使用的设备、显示分析软件以及2000年6月和12月在北京市城市污染大气探测中获取的数据。探测结果表明:北京市夏季和冬季近地面悬浮粒子浓度存在较大差异;同一季节北京城区及周边地区近地面悬浮粒子浓度存在较大差异;同一地区同一季节白天与黑夜存在较大差异。车载探测系统的观测试验表明:该套车载探测系统能连续记录近地面粒子尺度、汽车行驶轨迹和速度,其测量频率高,机动灵活,不受天气条件的影响;增加光阵探头个数,可以对0.1~9300.0μm的雾、气溶胶、雨和雪等粒子进行测量;可较好地应用于地面污染监测,同时还可用于云雾人工影响天气作业的地面监测。  相似文献   

10.
搭建试验地网研究土壤中金属导体对接地电阻的影响。通过埋设不同形状金属导体,改变金属导体埋设深度、与试验地网相对距离,在不同点位测量试验地网接地电阻值。分析试验数据发现,埋地金属导体导致接地电阻测量值偏小,其中环形金属导体对接地电阻测量值影响最大,一形金属导体对接地电阻测量值影响最小;金属导体位于测试电压极外侧相比位于内侧时,对接地电阻测量值的影响更大;金属导体位于测试电压极内侧时,不同测试点位接地电阻测量值差异较大,金属导体位于测试电压极外侧时,各点位接地电阻测量值差异不大;金属导体埋设深度对接地电阻测量值影响不明显。  相似文献   

11.
HMP45D湿度传感器温度特性测试与分析   总被引:1,自引:1,他引:0  
付锡桂  朱乐坤 《气象科技》2009,37(5):584-586
HMP45D型温湿一体化传感器,在我国气象部门被广泛用于测量空气湿度。由于我国地域辽阔,南方和北方气象台站环境温度差异较大,尤其是在寒冷的冬季,地处北部地区的台站,环境温度可达-40℃以下。为掌握环境温度的变化对湿度测量准确度的影响,本次试验随机选取3支HMP45D湿度传感器作为被测件,利用双压法湿度发生器发生的湿度值作为标准值,在不同温度点上,对3支湿度传感器进行了测量准确度的温度影响量测试。  相似文献   

12.
为了探讨露霜观测的综合判别技术,2014年在中国气象局大气探测试验基地建立了近地面温湿度观测系统,利用近地面温湿度、自动气象站以及露霜的人工记录和图像自动记录数据,研究露霜综合判别技术。初步确定草温与近地面露点温度之差为露霜形成的主要判别因子。当草温与近地面露点温度差小于某一阈值时发生结露结霜天气现象,且这个阈值与日最低气温有关。资料分析显示,利用综合指标判别露霜得出结果与实测结果对应较好,一致率达到84.5%。近地面温湿度观测对露霜有较好的指示作用。  相似文献   

13.
RS92探空仪温压湿测量性能分析   总被引:4,自引:0,他引:4  
Vaisala RS92探空仪代表了当今探空仪的较高水平,通常可以作为比对标准用来评估其他探空仪的性能。除了从其提供的指标确定其性能外,还可以根据实际施放过程中的探测数据进行评估。采用双Vaisala RS92探空仪同球施放比对法,对多天同一时次的探测数据进行统计,分析了其温压湿探测性能。结果表明,RS92型探空仪温压湿传感器的测量性能一致性较好,可作为比对施放时的标准探空仪来衡量其他类型探空仪的测量性能。  相似文献   

14.
The single-beam infrared hygrometer (Hyson and Hicks, 1975) is increasingly popular as a device capable of measuring atmospheric humidity fluctuation for use in eddy correlation studies. However, it is generally applied without recognition of the effect of temperature on its performance. Calibration data from a number of such instruments indicate that the resulting calibration coefficients vary with mean temperature as a direct consequence of temperature dependence in photodetector response. Fluctuations in atmospheric and instrumental temperatures can also introduce significant errors in the measurement of humidity fluctuations.This paper draws attention to the problem of temperature dependence in the calibration of these devices and provides a framework for investigating the magnitude of other errors involved in their use.  相似文献   

15.
In this study, the ability of two models of multi linear regression (MLR) and Levenberg–Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash–Sutcliffe efficiency coefficient $ \left( {\left| {{\text{Log}}({\text{NS}})} \right|} \right) $ were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.  相似文献   

16.
利用温江观测站边界层塔和探空获取的观测资料,从地表物理量的日变化、边界层的垂直结构及逐日变化这些方面分析该站夏季边界层特征,得到以下结论:(1)地表各物理量都具有明显的日变化特征,呈现一峰一谷的演变状态,其中地表热通量、动量通量、气温以及风速的峰值皆出现在午后,谷值出现在凌晨,湿度与气温日变化是反位相的。(2)近地层低层大气气温在早晚时段,随高度的增加而上升,呈逆温状态;午间时段随高度的增加而下降。9 m以下大气在午后的比湿梯度最大。风速值随着高度的增高而增大,风切变随着高度的增高而减小。(3)探空观测的边界层垂直结构显示:夏季温江站早晚边界层大气层结稳定,而午后表现为典型的混合边界层特征。大气温/湿度差异随高度增长而降低,各个时次温/湿度的差异都主要集中边界层低层,越靠近地面大气温/湿度差异越突出。8:00的温度最低,14:00最高。14:00的大气比湿最小,2:00和20:00较大。近地层风速随高度增长较快,在离地2~300 m左右高度达到一个极值,4个时次的风速差异不大。(4)地表温度、短波辐射、感热通量对边界层的高度和降水都有一定的影响。  相似文献   

17.
自动与人工观测数据的差异   总被引:41,自引:5,他引:41       下载免费PDF全文
该文概述了造成自动观测与人工观测数据差异的各种原因,其中包括仪器的测量原理与观测方法不同,观测时间和空间不同,采样方式与算法不同,观测时次不同等等。通过对比分析基本气象要素,如气压、气温、地温、风向风速、降水、湿度等的两种观测数据,认为自动气象站的观测结果更接近大气中的实际情况。自动站对气压、气温和风向风速的观测有明显的优势,但在雨量累计量的测量和高温高湿下的湿度测量效果不理想。  相似文献   

18.
自动观测与人工观测相对湿度比对分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了确定现有相对湿度自动观测与人工观测数据是否具有可比较性以及它们之间的偏差情况,利用全国保留人工观测的8个国家基准气候站2007—2013年的自动与人工观测相对湿度的整点资料进行比对分析,结果表明:自动气象站相对湿度的观测结果系统性低于人工观测结果,且随着相对湿度增加,两者系统偏差增大,系统偏差为-5.69%~-0.1%,标准偏差为2.02%~4.71%;夏季自动观测与人工观测相对湿度的差异最大且与环境风速有关,在低风速下自动观测与人工观测差异较大,随着风速增大,差异逐渐减小;气温对相对湿度观测也有一定影响;两类观测逐小时数据未见明显的时间差异;自动观测与人工观测相对湿度偏差,清晨相对湿度较高时高湿地区台站偏差较大,下午相对湿度低时偏差较小。  相似文献   

19.
李宛桐  黄威  姜明  史静 《气象科技》2020,48(1):31-39
在地基高光谱遥感中,特征向量法获取的温湿廓线以初值的方式对物理反演进行约束,其反演精度对物理反演结果有着重要的影响。利用AERI的观测辐射资料和同站点的探空数据,基于特征向量法分析了温度廓线与湿度廓线反演的异同点;研究了主成分个数的选择问题,综合考虑反演精度和特征向量中包含的信息将反演温度廓线和湿度廓线的最优主成分个数定为7。为提高反演精度,引入地面温度、湿度、气压作为影响因子,试验结果表明,考虑反演精度和稳定性,地面气压的引入相比于其他2种单一气象要素以及3种气象要素组成的因子集表现更好,尤其是对边界层中下部的温湿廓线有着明显的提升,并随着高度的降低提升作用更明显,温度廓线RMSE降低最高达到1.5K,湿度廓线RMSE降低最高达到0.42g/kg。同时,分析了对数反演形式对湿度廓线的影响,结果表明,以水汽混合比的形式反演时取自然对数对反演精度的影响较小;将反演得到的水汽混合比转化为相对湿度后,取自然对数对反演精度有12%以上的提升。  相似文献   

20.
福州市PM10突变特征与气象条件的关系研究   总被引:6,自引:1,他引:5       下载免费PDF全文
利用2004~2006年福州市PM10逐日资料,及同期地面气象要素资料和08时850 hPa天气图资料,采用统计分析方法,综合分析了PM10发生突变时气象条件的变化特征,结果表明:当地面气象要素场出现气压下降、风速下降、温度上升、相对湿度上升、降水量下降或出现气压上升、风速下降、温度下降、相对湿度下降、降水量下降的配置时PM10易发生正突变;当出现气压上升、风速上升、温度下降、相对湿度维持、降水量上升或出现气压下降、风速上升、温度上升、相对湿度上升、降水量上升的配置时PM10易发生负突变;当受大陆高压后部、暖区辐合系统影响时,PM10发生正突变的概率较高,受切变线、大陆高压前部系统影响时,PM10发生负突变的概率较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号