首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Summary We analyse the spatial representation of five previously published multi-century to millennial length dendroclimatological reconstructions of Fennoscandian summer temperatures. The reconstructions, ranging from local to regional scale, were based on either tree-ring width (TRW) or maximum latewood density (MXD) data or on a combination of the two. TRW chronologies are shown to provide reasonably good spatial information mainly for July temperatures, but a combination of TRW and MXD yields a better spatial representation for the whole summer season (June–August). A multiple-site reconstruction does not necessarily provide better spatial representation than a single site reconstruction, depending on the criterion for selecting data and also on the strength of the climate signal in the tree-ring data. In a new approach to analyse the potential for further developing Fennoscandian temperature reconstructions, we selected from a network of TRW and MXD chronologies those having the strongest temperature information a priori, to obtain a strong common climate signal suitable for a regional-scale reconstruction. Seven separate, but not independent, reconstructions based on progressively decreasing numbers of chronologies were created. We show that it is possible to improve the spatial representation of available reconstructions back to around AD 1700, giving high correlations (>0.7) with observed summer temperatures for nearly the whole of Fennoscandia, and even higher correlations (>0.85) over much of central-northern Fennoscandia. Further sampling of older trees (e.g. dry-dead and subfossil wood) would be needed to achieve the same high correlations prior to AD 1700. Our analysis suggests that it should be possible to select a few key sites for improving the reconstructions before AD 1700. Since tree-ring data from northern Fennoscandia are used in all available hemispheric-scale temperature reconstructions for the last millennium, there is also a potential for slightly improving the quality of the hemispheric-scale reconstructions, by including an improved reconstruction for Fennoscandia. However, adding new chronologies from previously unsampled regions would potentially improve hemispheric-scale temperature reconstructions more substantially. Authors’ addresses: Isabelle Gouirand, Anders Moberg, Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden; Hans W. Linderholm, Regional Climate Group, Department of Earth Sciences, G?teborg University, SE-405 30 G?teborg, Sweden; Barbara Wohlfarth, Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden.  相似文献   

2.
Håkan Grudd 《Climate Dynamics》2008,31(7-8):843-857
This paper presents updated tree-ring width (TRW) and maximum density (MXD) from Torneträsk in northern Sweden, now covering the period ad 500–2004. By including data from relatively young trees for the most recent period, a previously noted decline in recent MXD is eliminated. Non-climatological growth trends in the data are removed using Regional Curve Standardization (RCS), thus producing TRW and MXD chronologies with preserved low-frequency variability. The chronologies are calibrated using local and regional instrumental climate records. A bootstrapped response function analysis using regional climate data shows that tree growth is forced by April–August temperatures and that the regression weights for MXD are much stronger than for TRW. The robustness of the reconstruction equation is verified by independent temperature data and shows that 63–64% of the instrumental inter-annual variation is captured by the tree-ring data. This is a significant improvement compared to previously published reconstructions based on tree-ring data from Torneträsk. A divergence phenomenon around ad 1800, expressed as an increase in TRW that is not paralleled by temperature and MXD, is most likely an effect of major changes in the density of the pine population at this northern tree-line site. The bias introduced by this TRW phenomenon is assessed by producing a summer temperature reconstruction based on MXD exclusively. The new data show generally higher temperature estimates than previous reconstructions based on Torneträsk tree-ring data. The late-twentieth century, however, is not exceptionally warm in the new record: On decadal-to-centennial timescales, periods around ad 750, 1000, 1400, and 1750 were equally warm, or warmer. The 200-year long warm period centered on ad 1000 was significantly warmer than the late-twentieth century (< 0.05) and is supported by other local and regional paleoclimate data. The new tree-ring evidence from Torneträsk suggests that this “Medieval Warm Period” in northern Fennoscandia was much warmer than previously recognized.  相似文献   

3.
We present new tree-ring width, δ13C, and δ18O chronologies from the Koksu site (49°N, 86° E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.  相似文献   

4.
In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ13C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.  相似文献   

5.
At present the most powerful tree-ring based climate reconstructions use high numbers of growth proxy series (ring width and density) to produce spatially smoothed estimates, such as average Northern Hemisphere summer temperatures. These single parameter reconstructions might be supplemented with regional climate reconstructions capable of capturing variability in more than one climate variable without lower replication compromising statistical quality, if multiple tree ring proxies were used. Pinus sylvestris and Pinus uncinata latewood density, width and δ13C series are presented from two sites in the French subalpine zone, east of Briançon. Where two proxies have the same dominant climate control their combination enhances that signal. Where proxies differ in dominant controlling climate variable, combining series allows access to bi-variable calibrations. Using this approach, multi-proxy reconstructions of both temperature and precipitation would better reflect complex synoptic variability in climate on spatially useful scales.  相似文献   

6.
The seasonally varying moisture balance in a montane forest of Southeast Asia is reconstructed for the 20th century from the oxygen isotopic composition (δ18O) of subannual tree cellulose samples of Pinus kesiya growing at 1,500?m elevation on Doi Chiang Dao in northern Thailand. The cellulose δ18O values exhibit a distinctive annual cycle with amplitude of up to 12?‰, which we interpret to represent primarily the seasonal cycle of precipitation δ18O. The annual mean δ18O values correlate significantly with the amount of summer monsoon precipitation, and suggest a temporal weakening relationship between the South Asian monsoon and El Ni?o-Southern Oscillation over the late 20th century. The cellulose δ18O annual maxima values, which reflect the dry season moisture status, have declined progressively over the 20th century by about 3.5?‰. We interpret this to indicate a change in the contribution of the isotopically distinct fog water to the dry season soil moisture in response to rising temperature as well as deforestation.  相似文献   

7.
High-latitude δ18O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring δ18O record (AD 1780–2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring δ18O-temperature signal. Over the instrumental period (AD 1892–2003), tree-ring δ18O explained 29 % of interannual variability in April–July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the δ18O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the δ18O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric δ18O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other δ18O records from this region. Our δ18O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.  相似文献   

8.
Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO? regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.  相似文献   

9.
Changes in maximum spring and summer temperature are expected to have impacts on plant phenology and the occurrence of forest fires. Homogenised instrumental records of maximum spring and summer temperature are available in northern France for the past century, as well as documentary records of grape harvest dates and forest fire frequencies. Here we provide a new proxy of seasonal climate obtained by the analysis of latewood tree ring cellulose isotopic composition (δ18O, δ13C and δD), from 15 living oak trees (Quercus petraea) sampled in the Fontainebleau forest, near Paris. For the past 30 years, we have conducted a study on the inter-tree (for oxygen isotopes) and inter-station (for oxygen and hydrogen) isotopic variability. Multiple linear regression statistical analyses are used to assess the response function of documentary and tree-ring isotopic records to a variety of climatic and hydrological parameters. This calibration study highlights the correlation between latewood tree-ring δ18O and δ13C, grape harvest dates and numbers of forest fire starts with maximum growing season (April to September) temperature, showing the potential of multiple proxy reconstructions to assess the past fluctuations of this parameter prior to the instrumental period.  相似文献   

10.
Tree-ring width (TRW) and stable carbon isotope (??13C) in tree-ring cellulose of subalpine fir (Abies fabri) were used to develop high-resolution climate proxy data to indicate snow-depth variations in the Gongga Mountain, west China. Tree radial growth- and ??13C-climate response analyses demonstrated that the TRW and ??13C at the timberline (3,400?m.a.s.l.) are mainly influenced by temperature and precipitation of previous growth seasons and current summer (June to August) under cold and humid conditions. Considering the analogous control factors on both tree growth and carbon isotope discrimination (??13C) and snow accumulation, the negative and significant relationships between tree-ring parameters (TRW and ??13C) and mean monthly snowpack depth were found. Herein, by combining two tree-ring parameters, a primary snow-depth reconstruction (previous October to current May) over the reliable period A.D. 1880?C2004 was estimated. The reconstruction explains 58.0% of the variance in the instrumental record, and in particular captures the longer-term fluctuations successfully. Except the period with extreme higher snowpack depth around 1990, the snowpack depth seems to fluctuate in a normal way. The reconstruction agrees with the nearby snowpack depth record in Kangding and the mean observed snowpack-depth variations of the stations on the Tibetan Plateau, particularly at long-term scales. The snowpack depth in low-frequency fluctuations, during the past century, agrees quite well with the Eastern India precipitation covering the period of previous October?Ccurrent May. Our results suggest that combing tree-ring width and ??13C in certain subalpine tree species growing on the Tibetan Plateau may be an effective way for reconstructing regional snowpack variations.  相似文献   

11.
Dendroclimatological sampling of Scots pine (Pinus sylvestris L.) has been made in the province of J?mtland, in the west-central Scandinavian mountains, since the 1970s. The tree-ring width (TRW) chronology spans several thousand years and has been used to reconstruct June?CAugust temperatures back to 1632 bc. A maximum latewood density (MXD) dataset, covering the period ad 1107?C1827 (with gap 1292?C1315) was presented in the 1980s by Fritz Schweingruber. Here we combine these historical MXD data with recently collected MXD data covering ad 1292?C2006 into a single reconstruction of April?CSeptember temperatures for the period ad 1107?C2006. Regional curve standardization (RCS) provides more low-frequency variability than ??non-RCS?? and stronger correlation with local seasonal temperatures (51% variance explained). The MXD chronology shows a stronger relationship with temperatures than the TRW data, but the two chronologies show similar multi-decadal variations back to ad 1500. According to the MXD chronology, the period since ad 1930 and around ad 1150?C1200 were the warmest during the last 900?years. Due to large uncertainties in the early part of the combined MXD chronology, it is not possible to conclude which period was the warmest. More sampling of trees growing near the tree-line is needed to further improve the MXD chronology.  相似文献   

12.
Annual tree ring δ 18O and δ 13C chronologies from 1790 to 2008 were established using Tianshan spruce (Picea schrenkiana) in the central Tianshan Mountains of northwestern China. Temperature has a positive effect on tree ring δ 18O and δ 13C in the study area, while precipitation and relative humidity have negative effects. The standardized precipitation–evapotranspiration index (SPEI) considered all of these effects and was significantly negatively correlated with tree ring δ 18O and δ 13C. We combined the tree ring δ 18O and δ 13C series to reconstruct the past 192 years of SPEI, which accounted for about 46 % of the total variance of SPEI from 1950 to 2006. The reconstruction showed good spatial agreement with gridded data in Palmer Drought Severity Index and precipitation and an inverse relationship with temperature. Our SPEI reconstruction reveals several wet and dry periods over the past 192 years and has good agreement with other drought records. Wavelet analysis showed quasi-periodic 10-, 20-, 30-, and 70-year fluctuations in the reconstruction. The 10-, 20-, and 30-year periodicities may reflect the potential influence of North Atlantic Oscillation (NAO). Overall, this study indicates that the SPEI is a potential drought index, and the winter NAO affects regional moisture conditions in the long term.  相似文献   

13.
The dendrochronological use of the parameter maximum density (MXD) in Pinus Sylvestris L., at high latitudes, has provided valuable insights into past summer temperature variations. Few long MXD chronologies, from climatically coherent regions, exist today, with the exception being in northern Europe. Five, 500-year-long, Fennoscandian, MXD chronologies were compared with regard to their common variability and climate sensitivity. They were used to test Signal-free standardization techniques, to improve inferences of low-frequency temperature variations. Climate analysis showed that, in accordance with previous studies on MXD in Fennoscandia, the summer temperature signal is robust (R 2?>?50 %) and reliable over this climatically coherent region. A combination of Individual standardization and regional curve standardization is recommended to refine long-term variability from these MXD chronologies and relieve problems arising from low replication and standardization end-effects.  相似文献   

14.
Sea-level records show large glacial-interglacial changes over the past million years, which on these time scales are related to changes of ice volume on land. During the Pleistocene, sea-level changes induced by ice volume are largely caused by the waxing and waning of the large ice sheets in the Northern Hemisphere. However, the individual contributions of ice in the Northern and Southern Hemisphere are poorly constrained. In this study, for the first time a fully coupled system of four 3-D ice-sheet models is used, simulating glaciations on Eurasia, North America, Greenland and Antarctica. The ice-sheet models use a combination of the shallow ice and shelf approximations to determine sheet, shelf and sliding velocities. The framework consists of an inverse forward modelling approach to derive a self-consistent record of temperature and ice volume from deep-sea benthic δ18O data over the past 1 million years, a proxy for ice volume and temperature. It is shown that for both eustatic sea level and sea water δ18O changes, the Eurasian and North American ice sheets are responsible for the largest part of the variability. The combined contribution of the Antarctic and Greenland ice sheets is about 10 % for sea level and about 20 % for sea water δ18O during glacial maxima. However, changes in interglacials are mainly caused by melt of the Greenland and Antarctic ice sheets, with an average time lag of 4 kyr between melt and temperature. Furthermore, we have tested the separate response to changes in temperature and sea level for each ice sheet, indicating that ice volume can be significantly influenced by changes in eustatic sea level alone. Hence, showing the importance of a simultaneous simulation of all four ice sheets. This paper describes the first complete simulation of global ice-volume variations over the late Pleistocene with the possibility to model changes above and below present-day ice volume, constrained by observations of benthic δ18O proxy data.  相似文献   

15.
The South American Summer Monsoon (SASM) is a prominent feature of summertime climate over South America and has been identified in a number of paleoclimatic records from across the continent, including records based on stable isotopes. The relationship between the stable isotopic composition of precipitation and interannual variations in monsoon strength, however, has received little attention so far. Here we investigate how variations in the intensity of the SASM influence δ18O in precipitation based on both observational data and Atmospheric General Circulation Model (AGCM) simulations. An index of vertical wind shear over the SASM entrance (low level) and exit (upper level) region over the western equatorial Atlantic is used to define interannual variations in summer monsoon strength. This index is closely correlated with variations in deep convection over tropical and subtropical South America during the mature stage of the SASM. Observational data from the International Atomic Energy Agency-Global Network of Isotopes in Precipitation (IAEA-GNIP) and from tropical ice cores show a significant negative association between δ18O and SASM strength over the Amazon basin, SE South America and the central Andes. The more depleted stable isotopic values during intense monsoon seasons are consistent with the so-called ’‘amount effect‘’, often observed in tropical regions. In many locations, however, our results indicate that the moisture transport history and the degree of rainout upstream may be more important factors explaining interannual variations in δ18O. In many locations the stable isotopic composition is closely related to El Niño-Southern Oscillation (ENSO), even though the moisture source is located over the tropical Atlantic and precipitation is the result of the southward expansion and intensification of the SASM during austral summer. ENSO induces significant atmospheric circulation anomalies over tropical South America, which affect both SASM precipitation and δ18O variability. Therefore many regions show a weakened relationship between SASM and δ18O, once the SASM signal is decomposed into its ENSO-, and non-ENSO-related variance.  相似文献   

16.
We measured the annual variation in the stable isotopes of oxygen (δ18O) and hydrogen (δD) in tree rings of Abies georgei on the Batang–Litang Plateau of western China. Although correlations between tree-ring δ18O and δD are relatively weak in semi-arid regions, we found a strong correlation between the δ18O and δD time series from 1755 to 2009 under the wetter environment. Tree-ring δ18O and δD time series are both significantly and negatively correlated with moisture conditions from June to August, including relative humidity and total precipitation, respectively, from 1960 to 2009. Considering the difference in low-frequency domain between the two isotopes, the relative humidity histories from June to August, reconstructed separately from the tree-ring δ18O and δD data with instrumental climate data, reveal a persistent drying trend since 1850s, especially since the early 1970s. There is an obvious offset of reconstructed relative humidity from tree-ring δ18O and δD in the period 1755–1820, despite the strong similarity in their 21-year moving averages. The decreased relative humidity since the 1850s may be associated with the thermal contrast between the sea surface temperature of the Indian Ocean and the Qinghai-Tibetan Plateau, which determines the strength of moisture transfer via the Indian summer monsoon.  相似文献   

17.
Seven different tree-ring parameters (tree-ring width, earlywood width, latewood width, maximum density, minimum density, mean earlywood density, and mean latewood density) were obtained from Qinghai spruce (Picea crassifolia) at one chronology site in the Hexi Corridor, China. The chronologies were analyzed individually and then compared with each other. Growth–climate response analyses showed that the tree-ring width and maximum latewood density (MXD) are mainly influenced by warm season temperature variability. Based on the relationships derived from the climate response analysis, the MXD chronology was used to reconstruct the May–August maximum temperature for the period 1775–2008 A.D., and it explained the 38.1% of the total temperature variance. It shows cooling in the late 1700s to early 1800s and warming in the twentieth century. Spatial climate correlation analyses with gridded land surface data revealed that our warm season temperature reconstruction contains a strong large-scale temperature signal for north China. Comparison with regional and Northern Hemisphere reconstructions revealed similar low-frequency change to longer-term variability. Several cold years coincide with major volcanic eruptions.  相似文献   

18.
 We test the climate effects of changes in the tropical ocean by imposing three different patterns of tropical SSTs in ice age general circulation model simulations that include water source tracers and water isotope tracers. The continental air temperature and hydrological cycle response in these simulations is substantial and should be directly comparable to the paleoclimatic record. With tropical cooling imposed, there is a strong temperature response in mid- to high-latitudes resulting from changes in sea ice and disturbance of the planetary waves; the results suggest that tropical/subtropical ocean cooling leads to significant dynamical and radiative feedbacks that might amplify ice age cycles. The isotopes in precipitation generally follow the temperature response at higher latitudes, but regional δ18O/air temperature scaling factors differ greatly among the experiments. In low-latitudes, continental surface temperatures decrease congruently with the adjacent SSTs in the cooling experiments. Assuming CLIMAP SSTs, 18O/16O ratios in low-latitude precipitation show no change from modern values. However, the experiments with additional cooling of SSTs produce much lower tropical continental δ18O values, and these low values result primarily from an enhanced recycling of continental moisture (as marine evaporation is reduced). The water isotopes are especially sensitive to continental aridity, suggesting that they represent an effective tracer of the extent of tropical cooling and drying. Only one of the tropical cooling simulations produces generalized low-latitude aridity. These results demonstrate that the geographic pattern of cooling is most critical for promoting much drier continents, and they underscore the need for accurate reconstructions of SST gradients in the ice age ocean. Received: 26 July 1999 / Accepted: 10 July 2000  相似文献   

19.
The series of δ18O values is presented for all precipitation events in Moscow in 2014. Precipitation samples were taken at the observation site of the Meteorological Observatory of Lomonosov Moscow State University (MSU MO), and the isotopic analysis was carried out in the isotopic laboratory of the Department of Geography of MSU. The concentration of stable 18O in precipitation over Moscow in 2014 varied from -0.09 to -26.29‰. The maximum amplitudes of δ18O were registered in March-April and October. The pronounced interrelation was revealed between the oxygen isotopic composition of precipitation and surface air temperature (the correlation coefficient is 0.85). The computation of back trajectories of air masses and the analysis of weather charts demonstrated that the most isotopically light precipitation is typical of relatively cold air masses slowly moving over the continent during the last five days before precipitation. In this case, the ongoing condensation leads to the progressive isotopic depletion of precipitation (more and more isotope-depleted precipitation is registered). On the contrary, fast air transport from the middle and even from high latitudes of the Atlantic Ocean leads to the relatively constant of δ18O values of precipitation.  相似文献   

20.
The isotope enabled atmospheric water balance model is applied to examine the spatial and temporal variations of δ18O in precipitation, amount effect and meteoric water lines (MWL) under four scenarios with different fractionation nature and surface evaporation inputs. The experiments are conducted under the same weather forcing in the framework of the water balance and stable water isotope balance. Globally, the spatial patterns of mean δ18O and global MWLs simulated by four simulation tests are in reasonably good agreement with the Global Network of Isotopes in Precipitation observations. The results indicate that the assumptions of equilibrium fractionation for simulating spatial distribution in mean annual δ18O and the global MWL, and kinetic fractionation in simulating δ18O seasonality are acceptable. In Changsha, four simulation tests all reproduce the observed seasonal variations of δ18O in precipitation. Compared with equilibrium fractionation, the depleted degree of stable isotopes in precipitation is enhanced under kinetic fractionation, in company with a decrease of isotopic seasonality and inter-event variability. The alteration of stable isotopes in precipitation caused by the seasonal variation of stable isotopes in vapour evaporated from the surface is opposite between cold and warm seasons. Four simulations all produce the amount effect commonly observed in monsoon areas. Under kinetic fractionation, the slope of simulated amount effect is closer to the observed one than other scenarios. The MWL for warm and humid climate in monsoon areas are well simulated too. The slopes and intercepts of the simulated MWLs decrease under kinetic fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号