首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

2.
利用观测诊断和数值模拟相结合的方法,研究了2020年江淮流域6~7月超强梅雨年际异常的环流特征和驱动因子。结果表明:(1)2020年梅雨期长度和江淮流域总降水量均为1961年以来第一位,超强梅雨主要与西北太平洋异常反气旋(WNPAC)的异常偏强和异常西伸有关,WNPAC为江淮流域梅雨期持续的强降水提供了充沛的水汽来源;(2)2019年11月至2020年3月,赤道中东太平洋发生一次弱的中部型El Ni?o事件,本次事件持续时间短、强度偏弱,不足以激发和维持2020年梅雨期异常偏强的WNPAC,而春、夏季热带印度洋和热带北大西洋海温异常持续偏暖是WNPAC异常偏强和西伸的主要驱动因子;(3)热带印度洋暖海温在其东部的西太平洋激发出大气Kelvin波响应,造成了纬向风变化的不均匀分布,通过埃克曼抽吸,抑制了局地对流活动,驱动了WNPAC的生成;而热带北大西洋暖海温则引起局地对流活动增强,导致热带北大西洋上空上升运动和热带中部太平洋下沉运动增强,在西北太平洋上空激发异常的低空反气旋;热带印度洋和热带北大西洋暖海温对2020年6~7月WNPAC异常偏强均有显著的正贡献。  相似文献   

3.
Many previous studies have demonstrated that the boreal winters of super El Nino events are usually accompanied by severely suppressed Madden-Julian oscillation(MJO) activity over the western Pacific due to strong descending motion associated with a weakened Walker Circulation. However, the boreal winter of the 2015/16 super El Nino event is concurrent with enhanced MJO activity over the western Pacific despite its sea surface temperature anomaly(SSTA)magnitude over the Nino 3.4 region being comparable to the SSTA magnitudes of the two former super El Nino events(i.e.,1982/83 and 1997/98). This study suggests that the MJO enhanced over western Pacific during the 2015/16 super El Nino event is mainly related to its distinctive SSTA structure and associated background thermodynamic conditions. In comparison with the previous super El Nino events, the warming SSTA center of the 2015/16 super El Nino is located further westward, and a strong cold SSTA is not detected in the western Pacific. Accordingly, the low-level moisture and air temperature(as well as the moist static energy, MSE) tend to increase in the central-western Pacific. In contrast, the low-level moisture and MSE show negative anomalies over the western Pacific during the previous super El Nino events.As the MJO-related horizontal wind anomalies contribute to the further westward warm SST-induced positive moisture and MSE anomalies over the western tropical Pacific in the boreal winter of 2015/16, stronger moisture convergence and MSE advection are generated over the western Pacific and lead to the enhancement of MJO convection.  相似文献   

4.
Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni?o?Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900?2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Ni?o (La Ni?a) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO?BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Ni?o (La Ni?a) event exhibiting significant positive (negative) SSTAs over the tropical central?eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Ni?o-related (La Ni?a-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.  相似文献   

5.
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino.  相似文献   

6.
The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For El Nio developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipitation anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during El Nio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simulate the asymmetry of the wintertime circulation anomalies over the WNP between El Nio and La Nia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nia is generally symmetric about the WNPAC associated with El Nio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nin a events decay much faster than observed. In the observation, the WNPAC maintains throughout the El Nio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basinwide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.  相似文献   

7.
近年来随着对赤道东太平洋海温异常特征的深入认识,赤道太平洋海温变化的不同类型对气候的影响逐渐引起人们的关注。本文分析了东部和中部型El Ni?o发展年海温分布特征及其对中国夏季降水影响的差异和机理。结果表明:(1)东部型El Ni?o年的海温正距平中心发展快且强度比中部型El Ni?o年强。(2)两类El Ni?o发展年,中国夏季降水分布差异最大的是东北和华北地区,呈相反的分布,华南地区只是变化幅度不同,江淮流域降水一致偏少。(3)Walker环流分布的差异是两类El Ni?o年夏季降水分布差异的重要原因,其位于西太平洋地区下沉支的强弱以及有无上升支的分布,对西太副高和我国水汽的输送有明显影响。(4)500hPa位势高度场的遥相关波列以及高低层大气的垂直运动也是造成两类El Ni?o年中国夏季降水分布差异的重要原因。  相似文献   

8.
The NCEP Climate Forecast System version 2 (CFSv2) provides important source of information about the seasonal prediction of climate over the Indo-Pacific oceans. In this study, the authors provide a comprehensive assessment of the prediction of sea surface temperature (SST) in the tropical Indian Ocean (IO). They also investigate the impact of tropical IO SST on the summer anomalous anticyclonic circulation over the western North Pacific (WNPAC), focusing on the relative contributions of local SST and remote forcing of tropical IO SST to WNPAC variations. The CFSv2 captures the two most dominant modes of summer tropical IO SST: the IO basin warming (IOBW) mode and the IO dipole (IOD) mode, as well as their relationship with El Niño-Southern Oscillation (ENSO). However, it produces a cold SST bias in IO, which may be attributed to deeper-than-observed mixed layer and smaller-than-observed total downward heat flux in the tropical IO. It also overestimates the correlations of ENSO with IOBW and IOD, but underestimates the magnitude of IOD and summer IOBW. The CFSv2 captures the climate anomalies related to IOBW but not those related to IOD. It depicts the impact of summer IOBW on WNPAC via the equatorial Kelvin wave, which contributes to the maintenance of WNPAC in July and August. The WNPAC in June is mostly forced by local cold SST, which is better predicted by the CFSv2 compared to July and August. The mechanism for WNPAC maintenance may vary with lead time in the CFSv2.  相似文献   

9.
The middle and lower reaches of the Yangtze River in eastern China during summer 2020 suffered the strongest mei-yu since 1961. In this work, we comprehensively analyzed the mechanism of the extreme mei-yu season in 2020, with focuses on the combined effects of the Madden-Julian Oscillation (MJO) and the cooperative influence of the Pacific and Indian Oceans in 2020 and from a historical perspective. The prediction and predictability of the extreme mei-yu are further investigated by assessing the performances of the climate model operational predictions and simulations.   It is noted that persistent MJO phases 1?2 during June?July 2020 played a crucial role for the extreme mei-yu by strengthening the western Pacific subtropical high. Both the development of La Ni?a conditions and sea surface temperature (SST) warming in the tropical Indian Ocean exerted important influences on the long-lived MJO phases 1?2 by slowing down the eastward propagation of the MJO and activating convection related to the MJO over the tropical Indian Ocean. The spatial distribution of the 2020 mei-yu can be qualitatively captured in model real-time forecasts with a one-month lead. This can be attributed to the contributions of both the tropical Indian Ocean warming and La Ni?a development. Nevertheless, the mei-yu rainfall amounts are seriously underestimated. Model simulations forced with observed SST suggest that internal processes of the atmosphere play a more important role than boundary forcing (e.g., SST) in the variability of mei-yu anomaly, implying a challenge in quantitatively predicting an extreme mei-yu season, like the one in 2020.  相似文献   

10.
Shaolei TANG  Jing-Jia LUO  Jiaying HE  Jiye WU  Yu ZHOU  Wushan YING 《大气科学进展》2021,38(12):2023-2039,中插8-中插11
The extreme floods in the Middle/Lower Yangtze River Valley (MLYRV) during June?July 2020 caused more than 170 billion Chinese Yuan direct economic losses. Here, we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans. Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific, which brought tropical warm moisture northward that converged over the MLYRV. In addition, despite the absence of a strong El Ni?o in 2019/2020 winter, the mean SST anomaly in the tropical Indian Ocean during June?July 2020 reached its highest value over the last 40 years, and 43% (57%) of it is attributed to the multi-decadal warming trend (interannual variability). Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020 (albeit the magnitude of the predicted precipitation was only about one-seventh of the observed), sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods, compared to the contributions of SST anomalies in the Maritime Continent, central and eastern equatorial Pacific, and North Atlantic. Furthermore, both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods. Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.  相似文献   

11.
Shaolei TANG  Jing-Jia LUO  Jiaying HE  Jiye WU  Yu ZHOU  Wushan YING 《大气科学进展》2021,38(12):2023-2039,中插8-中插11
The extreme floods in the Middle/Lower Yangtze River Valley (MLYRV) during June?July 2020 caused more than 170 billion Chinese Yuan direct economic losses. Here, we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans. Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific, which brought tropical warm moisture northward that converged over the MLYRV. In addition, despite the absence of a strong El Ni?o in 2019/2020 winter, the mean SST anomaly in the tropical Indian Ocean during June?July 2020 reached its highest value over the last 40 years, and 43% (57%) of it is attributed to the multi-decadal warming trend (interannual variability). Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020 (albeit the magnitude of the predicted precipitation was only about one-seventh of the observed), sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods, compared to the contributions of SST anomalies in the Maritime Continent, central and eastern equatorial Pacific, and North Atlantic. Furthermore, both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods. Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.  相似文献   

12.
The relationship between summer rainfall anomalies in northeast China and two types of El Ni?o events is investigated by using observation data and an AGCM. It is shown that, for different types of El Ni?o events, there is different rainfall anomaly pattern in the following summer. In the following year of a typical El Ni?o event, there are remarkable positive rainfall anomalies in the central-western region of northeast China, whereas the pattern of more rainfall in the south end and less rainfall in the north end of northeast China easily appears in an El Ni?o Modoki event. The reason for the distinct differences is that, associated with the different sea surface temperature anomalies (SSTA) along the equatorial Pacific, the large-scale circulation anomalies along east coast of East Asia shift northward in the following summer of El Ni?o Modoki events. Influenced by the anomalous anticyclone in Philippine Sea, southwesterly anomalies over eastern China strengthens summer monsoon and bring more water vapor to Northeast China. Meanwhile, convergence and updraft is strengthened by the anomalous cyclone right in Northeast China in typical El Ni?o events. These moisture and atmospheric circulation conditions are favorable for enhanced precipitation. However, because of the northward shift, the anomalous anticyclone which is in Philippine Sea in typical El Ni?o cases shifts to the south of Japan in Modoki years, and the anomalous cyclone which is in the Northeast China in typical El Ni?o cases shifts to the north of Northeast China, leading to the “dipole pattern” of rainfall anomalies. According to the results of numerical experiments, we further conform that the tropical SSTA in different types of El Ni?o event can give rise to observed rainfall anomaly patterns in Northeast China.  相似文献   

13.
In summer 2020, extreme rainfall occurred throughout the Yangtze River basin, Huaihe River basin, and southern Yellow River basin, which are defined here as the central China (CC) region. However, only a weak central Pacific (CP) El Ni?o happened during winter 2019/20, so the correlations between the El Ni?o–Southern Oscillation (ENSO) indices and ENSO-induced circulation anomalies were insufficient to explain this extreme precipitation event. In this study, reanalysis data and numerical experiments are employed to identify and verify the primary ENSO-related factors that cause this extreme rainfall event. During summer 2020, unusually strong anomalous southwesterlies on the northwest side of an extremely strong Northwest Pacific anticyclone anomaly (NWPAC) contributed excess moisture and convective instability to the CC region, and thus, triggered extreme precipitation in this area. The tropical Indian Ocean (TIO) has warmed in recent decades, and consequently, intensified TIO basinwide warming appears after a weak El Ni?o, which excites an extremely strong NWPAC via the pathway of the Indo-western Pacific Ocean capacitor (IPOC) effect. Additionally, the ENSO event of 2019/20 should be treated as a fast-decaying CP El Ni?o rather than a general CP El Ni?o, so that the circulation and precipitation anomalies in summer 2020 can be better understood. Last, the increasing trend of tropospheric temperature and moisture content in the CC region after 2000 is also conducive to producing heavy precipitation.  相似文献   

14.
The western North Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Niño impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Niño mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Niño decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Niño decaying/La Niña developing or La Niña persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.  相似文献   

15.
探讨了夏季(6—8月)西北太平洋(Western North Pacific,WNP)热带气旋生成频次(Tropical Cyclone Genesis Frequency,TCGF)与热带海温关系的年代际变化,发现影响WNP TCGF的热带海温型在1991/1992年发生了年代际变化。在1990年代初之前,TCGF正异常对应的热带海温异常(Sea Surface Temperature Anomaly,SSTA)呈现东部型La Ni?a衰减位相,前冬至春季WNP局地暖SSTA在其西北侧激发气旋异常,夏季时由热带印度洋冷SSTA继续维持。在1990年代初之后,TCGF正异常对应的热带SSTA呈现东部型La Ni?a向中部型El Ni?o快速转换的位相,夏季中太平洋暖SSTA在其西北侧激发气旋异常,同时热带东印度洋至海洋性大陆以及热带大西洋的冷SSTA通过垂直环流圈加强中太平洋的辐合上升运动,进一步维持其西北侧气旋异常。由于激发气旋异常的暖SSTA在第二个年代相较第一个年代明显偏南偏东,气旋异常和TCGF正异常在第二个年代也整体偏南且向东扩展至更远的区域。WNP TCGF与热带海温关系的年代际变化与1990年代初之后厄尔尼诺-南方涛动演变速率加快有关。   相似文献   

16.
Observational and reanalysis data are used to investigate the different relationships between boreal spring sea surface temperature (SST) in the Indian and Pacific oceans and summer precipitation in China. Partial correlation analysis reveals that the effects of spring Indian Ocean SST (IO SST) and Pacific SST (PSST) anomalies on summer precipitation in China are qualitatively opposite. When IO SST anomalies are considered independently of PSST anomalies, precipitation decreases south of the Yangtze River, in most areas of Inner Mongolia, and in some parts of Liaoning Province, and increases in the Yangtze River valley, parts of southwestern and northern China, northeastern Inner Mongolia, and Heilongjiang Province. This results in a negative-positive-negative-positive pattern of precipitation anomalies in China from south to north. When PSST anomalies (particularly those in the Nin o3.4 region) are considered independently of IO SST anomalies, the pattern of precipitation anomalies in China is positive-negative-positive-negative from south to north. The genesis of summer precipitation anomalies in China is also examined when El Nin o-Southern Oscillation (ENSO) signals are removed from the ocean and atmosphere. An anticyclonic low-level wind anomaly forms in the South China Sea-Northwest Pacific area when the IO SST anomaly (SSTA) is warm and the Northwest Pacific SSTA is cold. This anticyclonic anomaly substantially influences summer precipitation in China. Anomalous warming of tropical IO SST induces positive geopotential height anomalies in the subtropics and an east-west dipole pattern in midlatitudes over Asia. These anomalies also affect summer precipitation in China.  相似文献   

17.
杨辉  陈隽  孙淑清 《大气科学》2005,29(3):396-408
利用海气耦合和大气气候模式研究东亚冬季风异常对夏季环流的影响, 结果表明, 东亚冬季风异常对于后期环流及海洋状态异常都起了很大的作用.一般情况下, 强的冬季风与后期弱的东亚夏季风和较强的南海季风相对应.与强(弱)冬季风异常相关的风应力的改变可以使热带太平洋海温从冬季至夏季呈现La Nina (El Nio)型异常分布.试验得到的由冬季风异常所产生的海洋及夏季环流的变化与实况是相当接近的.在异常的冬季风偏北风分量强迫下, 西太平洋上形成的偏差气旋环流在夏季已不存在, 这时东亚夏季风反而增强.而冬季赤道西风分量所产生的影响, 则在西太平洋上形成显著的偏差气旋环流, 使东亚副热带夏季风减弱, 南海夏季风加强.对于东亚大气环流而言, 与强弱冬季风对应的热带海洋海温异常强迫下, 不仅是冬季, 后期春季和夏季环流的特征都能得到很好的模拟.但是从分区看, 西太平洋暖池区的海温异常比东太平洋更为重要.单纯的热带中东太平洋的海温异常对东亚大气环流的影响主要表现在冬季, 对后期的影响并不十分清楚.整个热带海洋的异常型分布(不论是El Nio还是La Nia)型, 对冬夏季风的影响是重要的, 而单纯的某个地区的海温异常都比它的整体影响要小.从试验结果看, 海温在大尺度冬夏季环流的隔季相关中起了十分重要的作用.  相似文献   

18.
The mechanism for asymmetric atmospheric responses to the central Pacific(CP) El Ni?o and La Ni?a over the western North Pacific(WNP) is studied in this paper. The negative anomalies of rainfall over the key region of WNP are explained by diagnosing the column-integrated equations of moisture and moist static energy(MSE). It is revealed that the nonlinear advection of moist enthalpy is critical to introduce negative rainfall anomalies over the region. The anomalous easterly(westerly) in La Ni?a(CP El Ni?o) causes negative advection of anomalous moist enthalpy, inducing negative heating anomaly and an anticyclone anomaly in the WNP, which weakens(strengthens) the cyclone(anticyclone) in La Ni?a(CP El Ni?o). The MSE budget analysis shows a larger nonlinear term in CP El Ni?o than in eastern Pacific(EP) El Ni?o, inconsistent with the amplitudes of sea surface temperature anomalies. The reason is that the nonlinear term transforms to positive above 700 h Pa in EP El Ni?o, offsetting the negative advection below 700 h Pa and thus making the nonlinear term smaller. The nonlinear term is negative at low levels in CP El Ni?o, resulting in a larger nonlinear term. The stronger precipitation anomalies in the WNP during EP El Ni?o can be attributed to the linear moist enthalpy advection. The mean easterly wind at mid levels causes a larger(smaller) positive moist enthalpy advection in CP(EP) El Ni?o, due to a larger(smaller) moist enthalpy gradient, resulting in a positive(negative) linear moist enthalpy advection, which weakens(strengthens) the negative precipitation anomalies in the key region.  相似文献   

19.
In recent decades, the typical El Nio events with the warmest SSTs in the tropical eastern Pacific have become less common, and a different of El Nio with the warmest SSTs in the central Pacific, which is flanked on the east and west by cooler SSTs, has become more fre-quent. The more recent type of El Nio was referred to as central Pacific El Nio, warm pool El Nio, or dateline El Nio, or the El Nio Modoki. Central Pacific El Nio links to a different tropical-to-extratropical teleconnection and exerts different impacts on climate, and several classification approaches have been proposed. In this study, a new classification approach is proposed, which is based on the linear combination (sum or difference) of the two leading Empirical Orthogonal Functions (EOFs) of tropical Pacific Ocean sea surface temperature anomaly (SSTA), and the typical El Ni o index (TENI) and the central El Nio index (CENI) are able to be derived by projecting the observed SSTA onto these combinations. This classification not only reflects the characteristics of non-orthogonality between the two types of events but also yields one period peaking at approximate two to seven years. In particular, this classification can distin-guish the different impacts of the two types of events on rainfall in the following summer in East China. The typical El Nio events tend to induce intensified rainfall in the Yangtze River valley, whereas the central Pacific El Nio tends to induce intensified rainfall in the Huaihe River valley. Thus, the present approach may be appropriate for studying the impact of different types of El Nio on the East Asian climate.  相似文献   

20.
Subsurface ocean temperature indices are developed to identify two distinct types of tropical Pacific warming (El Ni?o) and cooling (La Ni?a) events: the Eastern-Pacific (EP) type and the Central-Pacific (CP) type. Ocean temperature anomalies in the upper 100?m are averaged over the eastern (80°W?C90°W, 5°S?C5°N) and central (160°E?C150°W, 5°S?C5°N) equatorial Pacific to construct the EP and CP subsurface indices, respectively. The analysis is performed for the period of 1958?C2001 using an ocean data assimilation product. It is found that the EP/CP subsurface indices are less correlated and show stronger skewness than the sea surface temperature (SST)-based indices. In addition, while both quasi-biennial (??2?years) and quasi-quadrennial (??4?years) periodicities appear in the SST-based indices for these two types, the subsurface indices are dominated only by the quasi-biennial periodicity for the CP type and by the quasi-quadrennial (??4?years) periodicity for the EP type. Low correlation, high skewness, and single leading periodicity are desirable properties for defining indices to separate the EP and CP types. Using the subsurface indices, major El Ni?o and La Ni?a events identified by the Ni?o-3.4 SST index are classified as the EP or CP types for the analysis period. It is found that most strong El Ni?o events are of the EP type while most strong La Ni?a events are of the CP type. It is also found that strong CP-type La Ni?a events tend to occur after strong EP-type El Ni?o events. The reversed subsequence (i.e., strong EP El Ni?o events follow strong CP La Ni?a events) does not appear to be typical. This study shows that subsurface ocean indices are an effective way to identify the EP and CP types of Pacific El Ni?o and La Ni?a events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号