首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is proposed that the orographic stationary waves are required by long-term balance of momentum in the at-mosphere with zonally asymmetric orographic forcing, This hypothesis may be confirmed successfully with the theo-retical model of geostrophic waves. In the Part I, we will explain the observed phase distributions of orographic sta-tionary waves at middle and high latitudes of the Northern Hemisphere, according to the long-term balance of zonal momentum over the stationary orographic forcing. It is revealed that the geographic distribution of stationary waves depends not only on local topgraphy but also on mean circulation fields and angular momentum flux in the atmos-phere. So these waves cannot be simulated by the models in a restricted area.  相似文献   

2.
The coupled climate model EC-Earth2 is used to investigate the impact of direct radiative effects of aerosols on stationary waves in the northern hemisphere wintertime circulation. The direct effect of aerosols is simulated by introducing prescribed mixing ratios of different aerosol compounds representing pre-industrial and present-day conditions, no indirect effects are included. In the EC-Earth2 results, the surface temperature response is uncorrelated with the highly asymmetric aerosol radiative forcing pattern. Instead, the anomalous extratropical temperature field bears a strong resemblance to the aerosol-induced changes in the stationary-wave pattern. It is demonstrated that the main features of the wave pattern of EC-Earth2 can be replicated by a linear, baroclinic model forced with latent heat changes corresponding to the anomalous convective precipitation generated by EC-Earth2. The tropical latent heat release is an effective means of generating stationary wave trains that propagate into the extratropics. Hence, the results of the present study indicate that aerosol-induced convective precipitation anomalies govern the extratropical wave-field changes, and that the far-field temperature response dominates over local effects of aerosol radiative forcing.  相似文献   

3.
While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model??s mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves and suggest a weak influence of prescribed observed SST in the northern extratropics. Results therefore indicate that improving the tropical divergent circulation and its response to tropical SST anomalies remains a key issue for increasing the skill of extratropical seasonal predictions, not only in the winter hemisphere but also in the boreal summer hemisphere where the prediction of heatwave and drought likelihood is expected to become an important challenge with increasing concentrations of greenhouse gases.  相似文献   

4.
A nonlinear steady-state baroclinic primitive-equation numerical model of atmospheric forced stationarywaves is used to investigate the tropics-extratropics interactions.Newtonian cooling,Rayleigh friction andbiharmonic horizontal diffusion are included in the model.The Eliassen-Palm (EP) cross-section and three-dimensional wave activity flux,which was derived by Plumb (1985) for linear quasi-geostrophic stationarywaves on a zonal flow,are used as diagnostics for the vertical and horizontal propagation of the waves.Results of the numerical experiments and diagnostics analyses suggest that the extratropical influenceon the tropical large-scale motion is important.The mid-latitude orographic forcing,especially of the Qing-hai-Xizang Plateau,and the extratropical thermal forcing make substantial contribution to the main-tenance of the cyclonic circulation over the eastern tropical and subtropical Pacific as well as the inversecirculation over the western Pacific in the upper troposphere.In addition,the longitudinal variation ofdiabatic heating in tropics has a significant influence on the wintertime stationary waves at higher latitudes.  相似文献   

5.
Summary The role of stationary (monthly mean) and transient (departure from monthly mean) waves within the atmospheric energy cycle is examined using global analyses from the European Centre for Medium Range Weather Forecasts (ECMWF) for the period 1980–1987. Only January and July averages are considered.It is confirmed that planetary stationary waves are basically baroclinic. Their contribution to the globally averaged energy cycle of the atmosphere is comparable to that of the transient waves. In January they contribute about 40% to the baroclinic conversion (CA) from zonal mean to eddy available potential energy. Local values for the northern hemisphere even show a predominant role of the stationary wave conversions over those originating from transient waves. Part of the available potential energy of stationary waves (A SE) is converted to kinetic energy by warm air rising and cold air sinking. Nonlinear energy conversion, which can be interpreted as destruction of stationary temperature waves by transients, is the second sink forA SE. The order of magnitude of these two processes is similar.Barotropic nonlinear conversions, though negligible in the global average, reveal large conversion rates between the mean positions of the polar and the subtropical jets. Their orientation is suggestive of a tendency to increase stationary wave kinetic energyK SE at its local minimum between the jets at the expense of the synoptic scale transients.While all terms of the energy cycle related to stationary waves reveal a predominance of the planetary scale (zonal wave numbers 1–3) transient waves are governed by synoptic scale waves (zonal wave numbers 4–9) only with respect to the baroclinic and barotropic conversions: a significant amount of transient wave energy (50% for the global average ofA TE) is due to planetary scale waves.With 15 Figures  相似文献   

6.
Low-frequency phenomena in the atmosphere are intimately related to stationary waves and, in a sense, the former may even be viewed as the time-varying part of the quasi-stationary waves themselves, Much attention has been focused on nonlinear interactions in the conceptual study on stationary waves. Linear and nonlinear primitive-equation baroclinic spectral models are adopted to investigate the response of stationary waves to largescale mechanical forcing and steady-state thermal forcing, both idealized and realistic, followed by calculations of the EP fluxes and three-dimensional wave activity fluxes(Plumb, 1985) for both the linear and nonlinear solutions. Results show that when the forcing source grows intense enough to be comparable to the real one, non-linear interaction becomes very important, especially for the maintenance of tropical and polar stationary waves. Care should be taken, however, in using the EP flux and Plumb's 3-D flux for diagnostic analysis of observational data as they are highly sensitive to nonlinear interaction.  相似文献   

7.
The structure of the atmospheric stationary planetary waves is obtained by means of the quasi‐geostrophic linear model developed by Matsuno (1 970). To show the influence of the upper boundary condition on the structure of the waves, the latter is computed using a rigid top and a radiation condition. The modifications to the wave structure obtained when the upper boundary is lowered from a height of 65 km to 42.5 km, 32.5 km, and 22.5 km are examined. The effects of varying the vertical grid increment are studied through a comparison of the wave structures obtained with 6, 12, and 24 levels between 5 and 65 km.  相似文献   

8.
Experiments are performed in a 13-m cylindrical tank to study the generation of interfacial internal waves by barotropic sinusoidal waves passing over a slope. At each tidal cycle, there are two waves generated, one propagating onshore and the other propagating offshore. The amplitude of the waves increases with increasing forcing and evolves as nonlinear waves if the shelf width is smaller than the wavelength of the baroclinic tide. Rotation does not modify the generating mechanism but the amplitude of the generated waves decreases with increasing rotation rate; also no internal waves are generated when the forcing period is larger than the inertial period, and at high rotation rate, there are only dispersive waves propagating from the shelf break region. The experiments covered a large range of internal Froude number, Rossby number and temporal Rossby number and compare well with in situ observations.  相似文献   

9.
The three-dimensional propagations of the forced stationary planetary waves in a realistic summer current, in which the vertical and horizontal wind shears are included, are discussed by using the refractive index squared of waves in a spherical coordinate system.The results show that there is no polar wave guide in stationary planetary wave propagations in summer. Thus, stationary planetary waves cannot propagate into the stratosphere. However, there are a wave guide pointing from the subtropics toward middle and high latitudes in the troposphere and another wave guide pointing from the lower troposphere at middle latitudes toward the upper troposphere near 30°oN in the forced stationary planetary wave propagations.A linearized, steady-state, quasi-geostrophic 34-level spherical coordinate model with Rayleigh friction and Newtonian cooling, horizontal kinematic thermal diffusivity is used to simulate the wave guides of three-dimensional propagations of stationary planetary waves in summer.  相似文献   

10.
The non-hydrostatic wave equation set in Cartesian coordinates is rearranged to gain insight into wave generation in a mesoscale severe convection system. The wave equation is characterized by a wave operator on the lhs, and forcing involving three terms—linear and nonlinear terms, and diabatic heating—on the rhs. The equation was applied to a case of severe convection that occurred in East China. The calculation with simulation data showed that the diabatic forcing and linear and nonlinear forcing presented large magnitude at different altitudes in the severe convection region. Further analysis revealed the diabatic forcing due to condensational latent heating had an important influence on the generation of gravity waves in the middle and lower levels. The linear forcing resulting from the Laplacian of potential-temperature linear forcing was dominant in the middle and upper levels. The nonlinear forcing was determined by the Laplacian of potential-temperature nonlinear forcing. Therefore, the forcing of gravity waves was closely associated with the thermodynamic processes in the severe convection case. The reason may be that, besides the vertical component of pressure gradient force, the vertical oscillation of atmospheric particles was dominated by the buoyancy for inertial gravity waves. The latent heating and potential-temperature linear and nonlinear forcing played an important role in the buoyancy tendency. Consequently, these thermodynamic elements influenced the evolution of inertial-gravity waves.  相似文献   

11.
The dynamics of sea surface temperature (SST) anomalies that force stationary atmospheric waves, which in turn, feed back on the SST field is addressed. The phenomena is isolated by analyzing the dynamics of a slab ocean that is thermally coupled to an atmospheric model. Particular emphasis is put on identifying SST structures that are weakly damped by the joint effect of air–sea heat transfer and atmospheric wave dynamics.A frame work is presented that singles out long-lived SST features in a slab ocean coupled to an arbitrary linear atmospheric model. It is demonstrated that an SST anomaly eventually disintegrates into a number of propagating wave packets. The wave packets are confined in a Gaussian envelope, and each packet is tied to a stationary wave of a particular wavelength. These structures are a manifestation of coupled SST-atmosphere mode, for which the atmosphere and the ocean nearly are in thermal equilibrium. However, a small disequilibrium causes the wave packet to propagate and to broaden in an apparent diffusive manner.Central ideas pertaining to the mid-latitude SST dynamics are illustrated by analyzing the thermal feedback between a two-level atmospheric model (on a β-plane) and a dynamically passive slab ocean. The relevance of the present idealized coupled-modes to the SST variability in the mid-latitudes and in atmospheric GCMs coupled to slab oceans is discussed.  相似文献   

12.
本文采用一个关于大气定常波的16层线性化原始方程三维谱模式,研究了冬季平流层大气对于对流层各种定常大尺度热力强迫的响应。研究结果表明,对流层中的热力强迫作用对于冬季平流层中垂直向上传播的行星定常波的维持有显著的贡献,平流层中强迫扰动的水平结构及其与对流层中扰动的差异与加热场的垂直结构有密切的关系。相对于强度和空间结构相同的强迫源而言,中纬强迫对于平流层的作用比低纬强迫更为显著。  相似文献   

13.
经圈环流对定常波传播的影响   总被引:1,自引:0,他引:1  
宋燕  缪锦海 《气象学报》1994,52(4):424-432
在一般斜压大气中,基本气流中包含经圈环流时,定常波传播不仅能穿过东风带,而且明显增强。在基流含有经圈环流的情况下,北半球中纬度地形强迫可引起低纬大气的显著响应,这表明经圈环流在中低纬定常响应的相互联系中起着重要作用;北半球中纬度热力强迫可产生类似北半球夏季季风环流的波列分布,这说明经圈环流在夏季季风环流的形成中起着一定的作用;在赤道东太平洋加热强迫情况下,在冬半球可引起PNA型的定常波传播波列,而在夏半球却没有明显的PNA特征。这表明经圈环流对冬、夏半球的定常波传播路径有着显著的影响。  相似文献   

14.
黄荣辉 《气象学报》1984,42(1):1-10
本文应用一个包括Rayleigh摩擦、牛顿冷却、水平涡旋热量扩散、定常、准地转、34层球坐标模式来研究冬季北半球地形与定常热源强迫所产生的定常行星波。 本文计算了强迫所产生的定常行星波引起的动量通量与热量通量。计算结果与观测结果比较一致。 计算结果表明:最大向北的动量通量与热量通量位于平流层。  相似文献   

15.
 The great continental ice sheets of the Pleistocene represented a significant topographic obstacle to the westerly winds in northern midlatitudes. This work explores how consequent changes in the atmospheric stationary wave pattern might have affected the shape and growth of the ice sheets themselves. A one dimensional (1-D) model is developed which permits an examination of the types and magnitudes of the feedbacks that might be expected. When plausible temperature perturbations are introduced at the ice-sheet margin which are proportional to the stationary wave amplitude, the equilibrium shape of the ice sheet is significantly altered, and depends on the sign of the perturbation. The proposed feedback also affects the response of the ice sheet to time-varying climate forcing. The results suggest that the evolution of a continental-scale ice sheet with a land-based margin may be significantly determined by the changes it induces in the atmospheric circulation. Received: 1 October 1999 / Accepted: 17 July 2000  相似文献   

16.
澳洲大陆热力强迫对南北半球环流异常的影响效应   总被引:9,自引:1,他引:9       下载免费PDF全文
本文采用OSU-AGCM动力框架加入牛顿加热项构成的简化大气环流模式,研究澳洲大陆热力强迫与南北半球环流异常的相关关系。本文对不同平衡温度模拟结果的差异(偏差场)进行了分析,探讨某局地热力强迫对全球其它区域环流异常的影响效应.数值试验结果表明,南北半球海陆热力结构有利于两半球行星尺度经向环流的加强及其低纬跨赤道气流的形成:南半球澳洲大陆热力强迫可以通过东、西风带侧向藕合效应,显著地影响北半球中纬西风带急流状况;二维Rossby波能量频散径向传播可能足澳洲热力强迫与北半球常定环流系统的异常变化相关现象的重要成因,且澳洲大陆强迫产生的径向波列路经与PNA、EU型相似.  相似文献   

17.
This article describes a remarkable effect of the horizontal component of the Coriolis vector, which is traditionally neglected in geophysical fluid wave theory, for the generation of inertio-gravity waves caused by flow over topography. Earlier an initial-value approach was used to calculate the evolutions of internal waves generated by atmospheric forcing in the linear Boussinesq model as done by many investigators for the study of near-inertial waves in the ocean. In this study, however, we focused on the mechanism of generating near-inertial waves by a bottom forcing with various periods. It is shown that the non-traditional Coriolis effects can significantly enhance the generation of near-inertial waves. Moreover, the intensity of generated near-inertial waves increases as the period of bottom forcing approaches to the local inertial period, suggesting the importance of tidal flows for generating near-inertial waves in deep ocean near critical latitudes. It is inferred that such near-inertial waves may contribute to a mechanism of deep-ocean mixing.  相似文献   

18.
夏季副热带行星波动振幅变化与我国极端降水的关系   总被引:1,自引:1,他引:1  
围绕夏季副热带行星波动的振幅异常,分析其与我国极端降水的关系,并探讨可能的影响机制。结果表明,北半球夏季行星波振幅强、弱年的差异主要表现在北太平洋副高和北大西洋副高的增强,并伴随着欧亚大陆的低压加深,即表现为海陆热力差异的增加和东亚夏季风环流的加强。在振幅强年,极端降水强度在我国北部明显加强,极端降水雨带异常偏北,而我国长江中下游流域极端降水则减弱,弱年则相反。伴随着增强的季风环流,在振幅强年水汽输送到达我国北部明显增强。同时,在大气低层我国绝大部分地区对流不稳定加剧;而在对流层中高层,我国北方地区斜压不稳定加剧,这都有利于振幅强年我国偏北部地区的极端降水偏强   相似文献   

19.
南边界强迫的非线性临界层与副高的形成、维持和振荡   总被引:4,自引:0,他引:4  
陆维松  陶丽 《气象学报》1996,54(6):651-660
用非线性准地转正压涡度方程模式,在南边界取定常强迫波,采用4种方案模拟了非线性临界层及其上激发的Kelvin猫眼,以确定热带的定常强迫对副高的形成、维持和振荡的影响。结果表明,南边界定常强迫仍在非线性临界层内激发行星尺度的准定常反气旋的Kelvin猫眼流场,猫眼的移动、强度和形状变化与夏季副高比较相似.而北边界定常强迫所得结果与夏季副高差异较大。因此,南边界所激发的非线性临界层上的Kelvin猫眼可能是夏季副高形成、维持和振荡的一种更为重要的新物理机制。文中还提出准定常行星波穿越副热带的非线性临界层的物理机制。  相似文献   

20.
Monthly or seasonally mean anomalies of large-scale atmospheric circulation are better represented by wave packets or their combination. Both qualitative and quantitative analyses of equations of wave packet dynamics, which are obtained by the use of WKB approximation, are very helpful for the understanding of structure, formation and propagation of stationary and quasi-stationary planetary wave packet patterns in the atmosphere. Indeed, these equations of wave packet dynamics can be directly solved by the method of characteristic lines, and the results can be simply and clearly interpreted by physical laws. In this paper, a quasi-geostrophic barotropic model is taken for simplicity, and the wave packets superimposed on several ideal profiles of the basic current and excited by some ideal forcings are investigated in order to make comparison of the accuracy of calculation with the analytical solution. It is revealed that (a) the rays of stationary planetary wave packet do not coincide with but go away from the great circle with significant difference if the shear of the basic zonal flow is not too small; (b) being superimposed on a westerly jet flow with positive shear (Uλ/y>0), the stationary wave packets excited by low-latitudinal forcing are first intensified during their northeastward propagation in the Northern Hemisphere, then reach their maximum of amplitude at some critical latitude, and after that weaken again; (c) the connected line of extremes (the positive and negative centres) of wave packet does not coincide with but crosses the ray by an angle, the larger the scale of external forcing, the larger the angle; and (d) the whole pattern of a trapped stationary wave packet is complicated by the interference between the incident and reflected waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号