首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Abstract

A new method is presented for the classification of sea ice using multi‐parametric Synthetic Aperture Radar (SAR) imagery. The local textural information, which is in essence a weighted gradient at a point, is computed in two SAR images of similar polarization but differing radar wavelength. The local information from the two images is combined at every pixel using a suggested rule for the addition of an entropy‐like measure. The resulting summation is shown to have the same negative exponential probability distribution found for the information from each separate image, confirming that the combined measure has the properties of information also. It is shown that the resulting joint information categories support a segmentation very similar to one based on consideration of the full complex scattering matrix for three wavelengths.  相似文献   

3.
Abstract

The role of sea‐ice in affecting the stability and long‐term variability of the oceanic thermohaline circulation (THC) is studied in this paper. The emphasis is placed on studying how sea‐ice might affect the stability and the long‐term variability of the THC through modulations of the surface heat and freshwater fluxes. A simple box model is analyzed to elucidate qualitatively the distinct physical meanings of these two processes. The analytical solution of this simple model indicates that, for the long timescales considered here, the thermal insulation stabilizes the THC while the freshwater feedback increases the effective inertia of the coupled ice‐ocean system. Sea‐ice insulation lessens the negative feedback between heat flux and the SST, and therefore, allows the SST to play a greater role in counteracting changes of the THC and high latitude salinity field. The freshwater feedback effectively links the surface heat flux to a freshwater reservoir, and thus, increases the effective inertia of the coupled ocean‐ice system. A two‐dimensional ocean model coupled with a thermodynamic sea‐ice model is used to estimate quantitatively the magnitudes of these two feedbacks. The numerical experiments involve the model's responses both to initial anomalies and to changes of forcing fields. For the free response cases (model responses to initial anomalies without changing the forcing fields), the model shows that the decay rate of an initial anomaly is greater when sea‐ice is included. For small perturbations the thermal insulation effect dominates over the freshwater feedback. The latter becomes increasingly more important for larger perturbations. In response to a change of external forcing, the presence of sea‐ice reduces the magnitude and the pace of the model's response. The numerical results are qualitatively consistent with the analytical solution of the box model.  相似文献   

4.
Abstract

This paper describes methodologies developed for predicting the drift and spread of oil spills in ice‐infested waters. Particular emphasis is placed on oil spills in medium and high ice concentrations. For ice concentrations greater than about 30%, the oil is found to drift with the ice. Empirical methods are used to determine the spread of oil in ice of different concentrations. The study showed that the equilibrium oil thickness in slush or brash (broken) ice is nearly 4 times that on cold water, which is itself very different from that on warm water. Comparisons with limited available data show good agreement.  相似文献   

5.
As a first qualitative assessment tool, LOVECLIM has been used to investigate the interactions between insolation, ice sheets and the East Asian Monsoon at the Marine Isotopic Stage 13 (MIS–13) in work by Yin et?al. (Clim Past 4:79–90, 2008, Clim Past 5:229–243, 2009). The results are in need of validation with a more sophisticated model, which is done in this work with the ARPEGE atmospheric general circulation model. As in the Earth system Model of Intermediate Complexity, LOVECLIM, ARPEGE shows that the northern hemispheric high insolation in summer leads to strong MIS–13 monsoon precipitation. Data from the Chinese Loess Plateau indicate that MIS–13 was locally a warm and humid period (Guo et?al. in Clim Past 5:21–31, 2009; Yin and Guo in Chin Sci Bull 51(2):213–220, 2006). This is confirmed by these General Circulation Model (GCM) results, where the MIS–13 climate is found to be hotter and more humid both in the presence and absence of any added ice sheets. LOVECLIM found that the combined effects of the ice sheets and their accompanying SSTs contribute to more precipitation in eastern China, whilst in ARPEGE the impact is significant in northeastern China. Nonetheless the results of ARPEGE confirm the counter-intuitive results of LOVECLIM where ice sheets contribute to enhance monsoon precipitation. This happens through a topography induced wave propagating through Eurasia with an ascending branch over northeastern China. A feature which is also seen in LOVECLIM. The SST forcing in ARPEGE results in a strong zonal temperature gradient between the North Atlantic and east Eurasia, which in turn triggers an atmospheric gravity wave. This wave induces a blocking Okhotskian high, preventing the northwards penetration of the Meiyu monsoon front. The synergism between the ice sheets and SST is found through the factor separation method, yielding an increase in the Meiyu precipitation, though a reduction of the Changma precipitation. The synergism between the ice sheets and SST play a non-negligible role and should be taken into consideration in GCM studies. Preliminary fully coupled AOGCM results presented here further substantiate the finding of stronger MIS–13 monsoons and a reinforcement from ice sheets. This work increases our understanding of the signals found in the paleo-observations and the dynamics of the complex East Asian Summer Monsoon.  相似文献   

6.
Arctic sea ice responds to atmospheric forcing in primarily a top-down manner, whereby near-surface air circulation and temperature govern motion, formation, melting, and accretion. As a result, concentrations of sea ice vary with phases of many of the major modes of atmospheric variability, including the North Atlantic Oscillation, the Arctic Oscillation, and the El Niño-Southern Oscillation. However, until this present study, variability of sea ice by phase of the leading mode of atmospheric intraseasonal variability, the Madden–Julian Oscillation (MJO), which has been found to modify Arctic circulation and temperature, remained largely unstudied. Anomalies in daily change in sea ice concentration were isolated for all phases of the real-time multivariate MJO index during both summer (May–July) and winter (November–January) months. The three principal findings of the current study were as follows. (1) The MJO projects onto the Arctic atmosphere, as evidenced by statistically significant wavy patterns and consistent anomaly sign changes in composites of surface and mid-tropospheric atmospheric fields. (2) The MJO modulates Arctic sea ice in both summer and winter seasons, with the region of greatest variability shifting with the migration of the ice margin poleward (equatorward) during the summer (winter) period. Active regions of coherent ice concentration variability were identified in the Atlantic sector on days when the MJO was in phases 4 and 7 and the Pacific sector on days when the MJO was in phases 2 and 6, all supported by corresponding anomalies in surface wind and temperature. During July, similar variability in sea ice concentration was found in the North Atlantic sector during MJO phases 2 and 6 and Siberian sector during MJO phases 1 and 5, also supported by corresponding anomalies in surface wind. (3) The MJO modulates Arctic sea ice regionally, often resulting in dipole-shaped patterns of variability between anomaly centers. These results provide an important first look at intraseasonal variability of sea ice in the Arctic.  相似文献   

7.
Abstract

Brine layer spacing has been measured in a core sample taken 19 January 1978 from Eclipse Sound, Baffin Island, Canada. Observations on snow and ice conditions and a record of air temperatures for the entire growth season allowed correlation of the brine layer spacing with the growth rate of the sea ice. Growth rate is related to climatology, and the vertical brine layer spacing profile in the ice provides a record of previous weather conditions. It is suggested that the spacing is inversely proportional to the growth rate, and could also be dependent on crystallographic orientation. The spacing decreased rapidly with depth near the bottom of the core sample, and this is not compatible with a general relation between spacing and growth rate. Before a definitive statement can be made, cores from a variety of locations, grown in a range of meteorological conditions, will have to be studied.  相似文献   

8.
Abstract

Analysis of satellite images of southeastern Hudson Bay taken over aperiod of 13 years led to the classification of ice distribution into three categories. The first category is for complete fast‐ice cover of the area, the second for fast ice covering only half the area and the third for the absence of fast ice extending away from the coast. Of the three factors considered‐ wind, water circulation and air temperature—the occurrence of strong southwesterly winds during the freezing period is probably the main factor regulating the extent of the fast‐ice cover for the first two categories. Through melting action, above‐freezing air temperatures appear to prevent the consolidation of ice into a solid cover giving rise to the rare third category of ice distribution.  相似文献   

9.
The Arctic’s rapidly shrinking sea ice cover: a research synthesis   总被引:21,自引:1,他引:20  
The sequence of extreme September sea ice extent minima over the past decade suggests acceleration in the response of the Arctic sea ice cover to external forcing, hastening the ongoing transition towards a seasonally open Arctic Ocean. This reflects several mutually supporting processes. Because of the extensive open water in recent Septembers, ice cover in the following spring is increasingly dominated by thin, first-year ice (ice formed during the previous autumn and winter) that is vulnerable to melting out in summer. Thinner ice in spring in turn fosters a stronger summer ice-albedo feedback through earlier formation of open water areas. A thin ice cover is also more vulnerable to strong summer retreat under anomalous atmospheric forcing. Finally, general warming of the Arctic has reduced the likelihood of cold years that could bring about temporary recovery of the ice cover. Events leading to the September ice extent minima of recent years exemplify these processes.  相似文献   

10.
The Arctic sea-ice cover has decreased in extent, area, and thickness over the last six decades. Most global climate models project that the summer sea-ice extent (SIE) will decline to less than 1 million (mill.) km2 in this century, ranging from 2030 to the end of the century, indicating large uncertainty. However, some models, using the same emission scenarios as required by the Paris Agreement to keep the global temperature below 2°C, indicate that the SIE could be about 2 mill. km2 in 2100 but with a large uncertainty of ±1.5 mill. km2. Here, the authors take another approach by exploring the direct relationship between the SIE and atmospheric CO2 concentration for the summer–fall months. The authors correlate the SIE and ln(CO2/CO2r) during the period 1979–2022, where CO2r is the reference value in 1979. Using these transient regression equations with an R2 between 0.78 and 0.87, the authors calculate the value that the CO2 concentration needs to reach for zero SIE. The results are that, for July, the CO2 concentration needs to reach 691 ± 16.5 ppm, for August 604 ± 16.5 ppm, for September 563 ± 17.5 ppm, and for October 620 ± 21 ppm. These values of CO2 for an ice-free Arctic are much higher than the targets of the Paris Agreement, which are 450 ppm in 2060 and 425 ppm in 2100, under the IPCC SSP1-2.6 scenario. If these targets can be reached or even almost reached, the “no tipping point” hypothesis for the summer SIE may be valid.  相似文献   

11.
Abstract

Synthetic Aperture Radar (SAR) data has become an important tool for studies of polar regions, due to high spatial resolution even during the polar night and under cloudy skies. We have studied the temporal variation of sea and land ice backscatter of twenty‐four SAR images from the European Remote Sensing satellite (ERS‐1) covering an area in Lady Ann Strait and Jones Sound, Nunavut, from January to March 1992. The presence of fast ice in Jones Sound and glaciers and ice caps on the surrounding islands provides an ideal setting for temporal backscatter studies of ice surfaces. Sample regions for eight different ice types were selected and the temporal backscatter variation was studied. The observed backscatter values for each ice type characterize the radar signatures of the ice surfaces. This time series of twenty‐four SAR images over a 3‐month period provides new insights into the degree of temporal variability of each surface. Ice caps exhibit the highest backscatter value of ‐3.9 dB with high temporal variability. Valley glacier ice backscatter values decrease with decreasing altitude, and are temporally the most stable, with standard deviations of 0.08–0.10 dB over the 90‐day period.

First‐year ice and lead ice show a negative trend in backscatter values in time and a positive correlation of up to 0.59 with air temperature over the 90‐day period. For first‐year ice and lead ice, episodes of large temperature fluctuations (±12°C) are associated with rapid changes in backscatter values (±2 dB). We attribute the backscatter increase to a temperature‐induced increase in brine volume at the base of the snow pack. Multi‐year ice, conglomerate ice and shore ice are relatively stable over the 3‐month period, with a backscatter variation of only a few dBs. An observed lag time of up to three days between backscatter increase/decrease and air temperature can be attributed to the insulation effect of the snow cover over sea ice. The net range of the backscatter values observed on the most temporally stable surface, valley glacier ice, of about 0.30 dB indicates that the ERS‐1 SAR instrument exceeds the 1 dB calibration accuracy specified for the Alaska SAR Facility processor for the three winter months.  相似文献   

12.
Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters.  相似文献   

13.
Abstract

The relationship between Arctic sea‐ice concentration anomalies, particularly those associated with the “Great Salinity Anomaly” of 1968–1982, and atmospheric circulation anomalies north of 45°N is investigated. Empirical orthogonal function (EOF) analyses are performed on winter Arctic ice concentration from 1954 to 1990, sea level pressure and 500‐hPa heights from 1947 to 1994, and 850‐hPa temperatures from 1963 to 1994. Variability on both interannual and decadal timescales is apparent in the time series of the leading winter EOFs of all variables. The first EOF of winter sea‐ice concentration was found to characterize the patterns of ice variability associated with the Great Salinity Anomaly in the northern North Atlantic from 1968–82. Spatial maps of temporal correlation coefficients between the time series of the first EOF of winter sea‐ice concentration and the winter atmospheric anomaly fields are calculated at lags of 0 and ±7 year. Maximum correlations were found to exist when the time‐series of this ice EOF 1 leads the atmospheric anomaly fields by one year. A particularly interesting result is the connection between the presence of ice anomalies in the Greenland and Barents Seas and subsequent pressure anomalies of the same sign over the Irminger Basin and the Canadian Arctic. The main emphasis of the paper is to identify connections between Arctic sea‐ice and atmospheric circulation anomalies at interannual time‐scales.  相似文献   

14.
The multifractal properties and scaling behaviors of the long-term and recent 2000-year δ 18 O records of NGRIP ice core are investigated by the multifractal detrended fluctuation analysis method. The generalized Hurst exponents, multifractal scaling exponents, and singularity spectrums of two δ 18 O records are derived to verify the multifractiality of two records. And the multifractal behaviors of two records are obviously different, which may reflect the climate change of the recent 2000-year time is quite different from one of the long-term time. In addition, the probability distribution analysis of two δ 18 O records is presented to manifest the different multifractality between two δ 18 O records of NGRIP ice core. Our results will be helpful to research the climate change.  相似文献   

15.
《大气与海洋》2013,51(3):169-183
Abstract

Ice‐band characteristics for the region off East Queen Maud Land in Antarctica were examined and their relationship with the wind conditions was assessed using a large number of Marine Observation Satellite (MOS) Multispectral Electronic Self Scanning Radiometer (MESSR) images received at Syowa Station during the period 1989–93. Analyses from 43 examples of bands captured from August to December suggest that ice‐band formation and band scale are affected by both wind speed and direction over approximately the preceding four days (defined as the effective wind). Ice‐band width and spacing are significantly correlated with the effective wind speed and the maximum wind speed during that period. The long axis of ice bands tends to be oriented at 70°‐90° (mean of 75°) to the right of the effective wind direction. The band scales decrease from winter (August) to summer (December) with typical band spacing of 4–6 km in winter and 1–2 km in summer. This seems to be primarily due to a decrease in ice floe size and partly due to a decrease in the effective wind speed from winter to summer. Band scale decreases from the ice interior to the ice edge under conditions of off‐ice winds.  相似文献   

16.
In order to assess the impact of the mid-tropospheric circulation over the Greenland ice sheet (GrIS) on surface melt, as simulated by the regional climate model MAR, an automatic Circulation type classification (CTC) based on 500?hPa geopotential height from reanalyses is developed. General circulation correlates significantly with the surface melt anomalies for the summers in the period 1958?C2009. The record surface melt events observed during the summers of 2007?C2009 are linked to the exceptional persistence of atmospheric circulations favouring warm air advection. The CTC emphasizes that summer 500?hPa circulation patterns have changed since the beginning of the 2000s; this process is partly responsible for the recent warming observed over the GrIS.  相似文献   

17.
18.
《大气与海洋》2013,51(2):171-185
Abstract

The exceptional sea‐ice retreat and advance that occurred in the Bellingshausen Sea, Antarctica during August 1993 was the largest such winter event in this sector of the Antarctic during the satellite era. The reasons for this fluctuation of ice are investigated using passive microwave satellite imagery, ice motion vectors derived from the satellite data, in‐situ meteorological reports and near‐surface winds and temperatures from the European Centre for Medium‐range Weather Forecasts (ECMWF) numerical weather prediction model. The ice edge retreat of more than 400 km took place near 80°W from approximately 1–15 August, although the southward migration of the ice edge was not continuous and short periods of advance were also recorded. Between 16 August and 2 September there was almost continuous sea‐ice recovery. The rate of change of the ice edge location during both the retreat and advance phases significantly exceeded the southward and northward velocity components of ice within the pack, pointing to the importance of ice production and melting during this event. During the month, markedly different air masses affected the area, resulting in temperature changes from +2°C to ‐21°C at the nearby Rothera station. ‘Bulk’ movement of the pack, and compaction and divergence of the sea ice, made a secondary, but still significant, contribution to the observed advance and retreat. The ice extent fluctuations were so extreme because strong meridional atmospheric flow was experienced in a sector of the Southern Ocean where relatively low ice concentrations were occurring. The very rapid ice retreat/advance was associated with pronounced low‐high surface pressure anomaly couplets on either side of the Antarctic Peninsula.  相似文献   

19.
Theoretical and Applied Climatology - Climate models project that the northern high latitudes will warm at a rate in excess of the global mean. This will pose severe problems for Arctic and...  相似文献   

20.
北极海冰的快速减少是否已经显著地影响了最近中纬度大陆冬季极端天气气候事件引起了气候学家的广泛争论。问题的争论是来源于观测数据的年限很短以及中高纬度复杂的内部变率。在本研究中,采用气候突变检测的方法,我们将秋季海冰覆盖面积的变化分为三个阶段:1979–1986(高海冰阶段),1987–2006(海冰缓慢减少阶段)和2007–2014(海冰快速减少阶段)。然后,我们分析了与每一个阶段秋季海冰变化相联系的中-东欧亚地区冬季气候(尤其极端天气事件)是什么。结果表明北极海冰减少对西伯利亚西部和东亚极端天气事件影响的信号是稳健可测的。伴随着海冰的快速减少,高低空急流速度的减弱和急流位置的南移;波动振幅的加强、乌拉尔山阻塞频率的增多。这些导致了寒潮事件从亚洲中部到中国东北部地区显著增多。并且,与北极海冰的快速减少相关的环流异常与观测到的环流异常基本一致。相反地,在高海冰阶段,与海冰相关的环流异常和观测的异常并不一致。这个阶段的环流异常是与北极涛动处于持续的负位相有关的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号