首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Properties and Stability of a Meso-Scale Line-Form Disturbance   总被引:1,自引:0,他引:1  
By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal line-like disturbance moving at any angle with respect to basic flow, arriving at the following results: (1) with linear shear available, the heterotropic instability of the disturbance will occur only when flow shearing happens in the direction of the line-like disturbance movement or in the direction perpendicular to the disturbance movement, with the heterotropic instability showing the instability of the internal inertial gravity wave; (2) in the presence of second-order non-linear shear, the disturbance of the heterotropic instability includes internal inertial gravity and vortex Rossby waves. For the zonal line-form disturbance under study, the vortex Rossby wave has its source in the second-order shear of meridional basic wind speed in the flow and propagates unidirectionally with respect to the meridional basic flow. As a mesoscale heterotropic instable disturbance, the vortex Rossby wave has its origin from the second shear of the flow in the direction perpendicular to the line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line-like disturbances, if the second-order shear happens in the meridional wind speed, i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the heterotropic instability of the disturbance is likely to be the instability of a mixed Rossby–internal inertial gravity wave; (4) the symmetric instability is actually the instability of the internal inertial gravity wave. The second-order shear in the flow represents an instable factor for a symmetric-type disturbance; (5) the instability of a traversal-type disturbance is the instability of the internal inertial gravity wave when the basic flow is constant or only linearly sheared. With a second or nonlinear vertical shear of the basic flow taken into account, the instability of a traversal-type disturbance may be the instability of a mixed vortex Rossby – gravity wave.  相似文献   

2.
Summary The nonlinear response of a dynamically unstable shear flow with critical level to an initial temperature anomaly is investigated using a nonlinear numerical model. Both nonconstant and constant shear profiles of the basic flow are considered. Effects of the solid lower boundary on the dynamically unstable, nonlinear flow are also studied. It is found that in a dynamically unstable, linear flow with a hyperbolic tangent wind profile, the updraft is tilted upshear. The result in consistent with that of a linear stability model (LC). The upshear tilt can be explained by the Orr mechanism (1907) and the energy argument proposed by LC. In a dynamically unstable, nonlinear flow, the updrafts produced by a sinusoidal initial temperature perturbation are stronger in the lower layer and are more compact and located further apart compared to the corresponding linear flow. In addition, the perturbed wave energy is slightly smaller than the linear case. It is found that the growth rate is smaller during the early stage and much larger during the later stage. For a localized initial temperature perturbation in a dynamically unstable flow, a stronger updraft with two compensated downdrafts are produced. Gravity waves are produced in a dynamically stable flow with both a hyperbolic tangent wind profile and a linear wind profile. For a linear shear flow with Richardson number less than 1/4, the disturbance grows in the early stage and then decays algebraically at later times, similar to that found in other linear theoretical studies. The influence of the solid lower boundary is to suppress the shear instability in a nonlinear flow with a hyperbolic tangent wind profile ofRi<1/4.With 9 Figures  相似文献   

3.
The adjustment of the boundary layer immediately downstream froma coastline is examined based on two levels of eddy correlation data collected on a mast at the shore and six levels of eddy correlation data and profiles of mean variables collected from a mast 2 km offshore during the Risø Air-Sea Experiment. The characteristics of offshore flow are studied in terms of case studies and inter-variable relationships for the entire one-month data set. A turbulent kinetic energy budget is constructed for each case study.The buoyancy generation of turbulence is small compared to shear generation and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly weaken downstream from the coast. The reduction of downward mixing of momentum by the stratification leads to smaller roughness lengths compared to the unstable case. Shear generation at higher levels and advection of stronger turbulence from land often lead to an increase of stress and turbulence energy with height and downward transport of turbulence energy toward the surface.With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained by shear generation in the accelerating offshore flow.  相似文献   

4.
A stability analysis of the coupled ocean–atmosphere is presented which shows that the potential energy (PE) of the upper layer of the ocean is available to generate coupled growing planetary waves. An independent analysis suggests that the growth of these waves would be maintained in the presence of oceanic friction. The growing waves are a consequence of relaxing the rigid lid approximation on the ocean, thus allowing an upward transfer of energy across the sea surface. Using a two and a half layer model consisting of an atmospheric planetary boundary layer, coupled with a two layer ocean comprising an active upper layer and a lower layer in which the velocity perturbation is vanishingly small, it is shown that coupled unstable waves are generated, which extract PE from the main thermocline. The instability analysis is an extension of earlier work [Tellus 44A (1992) 67], which considered the coupled instability of an atmospheric planetary boundary layer coupled with an oceanic mixed layer, in which unstable waves were generated which extract PE from the seasonal thermocline. The unstable wave is an atmospheric divergent barotropic Rossby wave, which is steered by the zonal wind velocity, and has a wavelength of about 6000 km, and propagates eastward at the speed of the deep ocean current. It is argued that this instability, which has a multidecadal growth time constant, may be generated in the Southern Ocean, and that its properties are similar to observations of the Antarctic Circumpolar Wave (ACW).  相似文献   

5.
Summary In this study, the response of a dynamically unstable shear flow with a critical level to periodic forcing is presented. An energy argument is proposed to explain the upshear tilt of updrafts associated with disturbances in two-dimensional stably stratified flows. In a dynamically unstable flow, the energy equation requires an upshear tilt of the perturbation streamfunction and vertical velocity whereU z is positive. A stability model is constructed using an iteration method. An upshear tilt of the vertical velocity and the streamfunction fields is evident in a dynamically unstable flow, which is required by energy conversion from the basic shear to the growing perturbation wave energy according to the energy argument. The momentum flux profile indicates that the basic flow is decreased (increased) above (below) the critical level. Thus, the shear instability tends to smooth the shear layer. Following the energy argument, a downshear tilt of the updraft is produced in an unstably stratified flow since the perturbation wave energy is negative. The wave energy budget indicates that the disturbance is caused by a thermal instability modified by a shear flow since the potential energy grows faster than the kinetic energy.With 4 Figures  相似文献   

6.
A class of non-linear instabilities of a vertically sheared zonal flow is discussed. This is a type of baroclinic instability that lies outside the purview of a linear eigenmode analysis of baroclinic instability problems. The form taken by the instability is that of an ensemble of three neutral Rossby waves whose amplitudes are slowly modified by their mutual non-linear interactions. For a triad of small amplitude, these interactions introduce a weak, vertical variation of phase to the structure of the individual waves. This allows the generation of rectified heat fluxes and an exchange of energy with the mean flow.This instability exhibits explosive growth and spans a range of horizontal wavenumbers that exceeds the range that is unstable in the corresponding linear model. It is shown that the type of instability discussed can only occur when the model used admits unstable eigenmodes as well as neutral Rossby waves.The mechanism for the non-linear instability discussed here is believed to be fairly general and should exist also in the context of a horizontally sheared flow where it would take the form of a barotropic instability.  相似文献   

7.
利用常规观测、多普勒天气雷达和ERA—Interim再分析资料(0.25°×0.25°),对2016年11月22日陕西东南部地区一次伴有雷暴的暴雪天气过程进行诊断分析。结果表明:(1)此次暴雪是在低层东路回流冷空气与中层暖湿气流共同作用下形成的,700 hPa存在强的风向风速辐合,辐合区前部16 m/s的西南急流,为暴雪产生提供了有利的动力和水汽条件。急流加强是降雪增幅的主要原因。(2)冷季、强的锋区和低空急流、冷垫、逆温层、锋区之上湿的中性到条件不稳定层结、强切变低CAPE、雷达带状回波是此类天气预报中需要关注的特征。(3)整体层状云降水中,局地对流性云团旺盛发展,是此次暴雪的云系特征,暴雪发生在对流云团加强西伸、移速减缓的时段;与本地暖季相比,暴雪对流云团的面积较小,最大反射率因子所在的高度较高。(4)由动力锋生产生的次级环流上升支促使冷垫之上的暖湿气流快速上升,触发条件对称不稳定能量释放,使气块在逆温层之上获得正浮力,是暴雪发生并伴有雷暴的主要物理机制。  相似文献   

8.
基于中国东南沿海冬季强降水的统计分析,采用EOF、REOF、North检验等方法对2011—2016年冬季(12、1、2月)欧洲中期天气预报中心降水资料进行分类,选取位于内陆的第1、第4 REOF模态,对该两模态的降水样本进行合成分析,合成的降水中心与东南沿海福建的多年统计暴雨中心吻合。与强降水相配合,1 000 hPa上有自北向南的渐近线型辐合气流,并伴有锋区,从而形成天气尺度渐近线型锋生辐合线,强降水位于辐合轴线左侧气旋式风切变处。这是一类以前未曾受到关注和讨论的东南沿海地区冬季暴雨系统。利用客观判定方法和建立系统坐标系,以确认并诊断该系统的结构。在冷干少雨、低层盛行偏北风的冬季,此类系统兼有锋区热力抬升与辐合气流动力抬升,在雨区形成旺盛的上升运动;同时,通过辐合线正交风分量将邻近的海面水汽汇集到降水区,与中高层副高边缘偏南气流相向而行,构成较为深厚的交汇式水汽输送层;通过非绝热加热,形成深厚的热力对流不稳定,并通过干区向湿气团下楔入,形成下干上湿的湿动力不稳定,以及假相当位温随高度增加而递减,形成上暖湿、下冷干的对流不稳定层。因此,该系统对冬季强降水的发生发展及落区具有重要影响。通过WRF模式的模拟结果探讨环境热力机制的影响,结果显示,凝结潜热加热可影响辐合线的辐合位置和强度、锋生区的位置及强度,进而影响系统的活跃程度。中层潜热加热抑制平流感热冷却进入暖气团,维持降雨区的热力不稳定和降水强度。渐近线型锋生辐合线有利于东南沿海冬季大范围降水出现暴雨,其中凝结潜热释放具有重要贡献。  相似文献   

9.
10.
利用地面和探空常规探测资料、多普勒天气雷达以及风廓线雷达资料,对2015年8月7日发生于北京的一次伴随有闪电和冰雹的突发性局地强降水过程的成因进行了分析。结果表明:这次过程发生在强层结不稳定环境中,对流层中层低槽配合低层切变线,促进河北西北部对流发展,并向东南方向移动,形成北京西北部短时强降水;北京中部地区强降水的直接制造者则是新生的局地性雷暴单体,由雷暴冷池出流和暖湿空气在边界层交绥和辐合所触发。北京西北部地形促使冷池出流下山速度加快、冷池出流高度抬高,以及偏东暖湿气流的辐合抬升作用,则是局地雷暴新生的重要影响因子。  相似文献   

11.
A linearized instability analysis model with five unknowns was proposed to describe disturbance motions under general oceanic background conditions, including large-scale current shear, density stratification, frontal zone, and arbitrary topography. A unified linear theory of wavelike perturbations for surface gravity waves, internal gravity waves and inertial gravity waves was derived for the adiabatic case, and the solution was then found using Fourier integrals. In this theory, we discarded the assumptions widely accepted in the literature concerning derivations of wave motions such as the irrotationality assumption for surface gravity waves, the rigid-lid approximation for internal gravity waves, and the long-wave approximation for inertial gravity waves. Analytical solutions based on this theory indicate that the complex dispersion relationships between frequency and wave-number describing the propagation and development of the three types of wavelike perturbation motions include three components: complex dispersion relationships at the sea surface; vertical invariance of the complex frequency; and expressions of the vertical wave-number (phase). Classical results of both surface waves and internal waves were reproduced from the unified theory under idealized conditions. The unified wave theory can be applied in the dynamical explanation of the generation and propagation properties of internal waves that are visible in the satellite SAR images in the southern part of the China Seas. It can also serve as the theoretical basis for both a numerical internal-wave model and analytical estimation of the ocean fluxes transported by wavelike perturbations.  相似文献   

12.
In this paper,the heavy rain process from June 30 to July 2,1991,has been simulated by MM4.and three-dimensional moist potential vorticity distribution of the simulation results has beencalculated.It is shown that moist potential vorticity is an important physical variable to reveal heavyrain structure and dynamic mechanisms.Negative moist potential vorticity corresponds to the Meiyufront-wind shear line system and the negative center corresponds to the heavy rain center.Negativemoist potential vorticity mainly attributes to the effects of meridional baroclinic term and convectiveunstable term.The former is favourable to the maintenance of zonal precipitation and the latter is themechanism of the heavy rain center propagating along the rain belt.The heavy rain is contributed bythe cooperative effects of conditional convective instability,baroclinic instability and upper air inertialinstability.  相似文献   

13.
In this paper,the heavy rain process from June 30 to July 2,1991,has been simulated by MM4.and three-dimensional moist potential vorticity distribution of the simulation results has been calculated.It is shown that moist potential vorticity is an important physical variable to reveal heavy rain structure and dynamic mechanisms.Negative moist potential vorticity corresponds to the Meiyu front-wind shear line system and the negative center corresponds to the heavy rain center.Negative moist potential vorticity mainly attributes to the effects of meridional baroclinic term and convective unstable term.The former is favourable to the maintenance of zonal precipitation and the latter is the mechanism of the heavy rain center propagating along the rain belt.The heavy rain is contributed by the cooperative effects of conditional convective instability,baroclinic instability and upper air inertial instability.  相似文献   

14.
We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, z s, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is z s = u * 3 /ks, where u * is friction velocity, k is the von Kármán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower observations confirm a strong qualitative change in the structure of the turbulence at about that height. The tallest eddies within the surface layer have height z s, so z s is a new basis parameter for similarity models of the surface layer.  相似文献   

15.
浙北沿海连续3次飑线演变过程的环境条件   总被引:4,自引:2,他引:2       下载免费PDF全文
利用雷达和地面加密自动气象站、日本气象厅(JMA)区域谱模式(RSM)再分析资料,对2008年7月2日发生在浙北的连续3次飑线过程(其中第3次在近海生成了弓形回波)进行诊断分析。分别探讨3条飑线发展演变情况和对应的各种环境场条件,侧重对比下垫面温度、湿度、风辐合等条件与对流发展演变的关系,尤其是海陆边界对对流新生与加强的作用。从水平、垂直方向分析第3条典型弓形飑线形成过程中单体的发展、减弱、出流、入流、新单体生成、传播等过程。研究发现,在天气背景相似的小范围区域内,气温高、湿度大之处、锋面、辐合线、海岸线附近容易新生单体和加强对流。强对流系统对下垫面也有反馈作用,进而影响对流系统的发展变化:强雷暴单体的下沉气流在近地面形成冷池,其前侧冷空气向外辐散形成阵风锋,迫使锋前暖湿气流在冷池上抬升,在阵风锋附近产生新的对流单体,形成对流系统的传播。强单体经常在海岸线附近生成、加强,尤其是阵风锋与海岸线相交时。  相似文献   

16.
 A simple climate model has been developed to investigate the existence of the small ice cap instability in the Southern Hemisphere. The model consists of four coupled components: an atmospheric energy balance model, a thermodynamic snow-sea ice model, an oceanic mixed layer model and a terrestrial ice model. Results from a series of experiments involving different degrees of coupling in the model show that the instability appears only in those cases when an explicit representation of the Antarctic ice sheet is not included in the model. In order to determine which physical processes in the ice sheet model lead to a stabilization of the system we have conducted several sensitivity experiments in each of which a given ice sheet process has been removed from the control formulation of the model. Results from these experiments suggest that the feedback between the elevation of the ice sheet and the snow accumulation-ice ablation balance is responsible for the disappearance of the small ice cap instability in our simulation. In the model, the mass balance of the ice sheet depends on the air temperature at sea level corrected for altitude and it is, therefore, a function of surface elevation. This altitude-mass balance feedback effectively decouples the location of the ice edge from any specific sea level isotherm, thus decreasing the model sensitivity to the albedo-temperature feedback, which is responsible for the appearance of the instability. It is also shown that the elevation-radiative cooling feedback tends to stabilize the ice sheet, although its effect does not seem to be strong enough to remove the instability. Another interesting result is that for those simulations which include the terrestrial ice model with elevation-dependent surface mass balance, hysteresis is exhibited, where for a given level of external forcing, two stable solutions with different, non-zero ice-sheet volume and area and different air and ocean temperature fields occur. However, no unstable transition between the two solutions is ever observed. Our results suggest that the small ice cap instability mechanism could be unsuitable for explaining the inception of glaciation in Antarctica. Received: 14 April 1997 / Accepted: 22 October 1997  相似文献   

17.
A three-dimensional numerical model has been used to assess the effects of vertical stability and wind shear on the nature and form of meso-scale cellular convection (MCC). The model was shown to be capable of simulating a real occasion of MCC before it was used in idealised cases. These cases revealed different regimes in MCC: open cells, longitudinal bands and closed cells/transverse bands. Open cells were favoured by the existence of instability in the surface layer and a lack of wind shear in the Ekman layer. Longitudinal bands were favoured by similar conditions in the surface layer plus wind shear in the Ekman layer. A near-neutral surface layer favoured the occurrence of closed cells/transverse bands. The depth of convection in the longitudinal bands was a function of the stability in both the surface and Ekman layers and of the wind shear in the Ekman layer. The regimes are related to the instability and shear through bulk Richardson numbers in the surface and Ekman layers.  相似文献   

18.
复杂地形下雷暴增强过程的个例研究   总被引:12,自引:2,他引:10  
陈双  王迎春  张文龙  陈明轩 《气象》2011,37(7):802-813
本文基于多普勒雷达变分同化分析系统(VDRAS)反演的对流层低层热力和动力场,并结合多种稠密观测资料,对北京地区2009年7月22日一次弱天气尺度强迫下雷暴在山区和平原增强的机理进行了较深入的分析。研究结果表明:雷暴过程受大尺度天气系统影响不明显,对流前期地面弱冷锋,是此次雷暴新生的触发机制,高层冷平流、低层偏南暖湿气流的稳定维持和对流不稳定能量的聚集是本次雷暴增强的必要条件。雷暴从河北北部移进北京西北山区后,在下山和到达平原地区时,经历了两次明显的发展增强阶段。雷暴第一阶段下山增强,地形强迫起着主要作用,具体表现在三个方面:(1)地形斜坡使得雷暴冷池出流下山加速与稳定维持的偏南气流形成了强的辐合区;(2)地形抬升使得偏南暖湿入流强烈地上升,从而加剧了对流的发展;(3)地形抬高了冷池出流高度,使得出流与近地面偏南气流构成随高度顺转的低层垂直风切变,低层暖空气之上有冷平流叠加,使得雷暴前方的动力和热力不稳定增强。雷暴第二阶段在平原地区再次增强的主要原因是:组织完好的雷暴到达平原地区后,其冷池与低层暖舌在城区(朝阳地区)的对峙,产生了强的扰动温度梯度;强的冷池出流与势力相当的偏南暖湿气流相互作用产生了强的辐合上升气流,并与下沉气流在较长时间内共存;冷池出流形成的负涡度与低层切变产生的正涡度达到近似平衡状态。运用RKW理论,三者导致雷暴前方低层的辐合抬升最强,最有利于雷暴的维持发展。  相似文献   

19.
The sensitivity of tropical cyclone (TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand, the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.  相似文献   

20.
Near Wall Flow over Urban-like Roughness   总被引:3,自引:35,他引:3  
In this study, comprehensive measurements over a number of urban-type surfaces with the same area density of 25% have been performed in a wind tunnel. The experiments were conducted at a free stream velocity of 10 m s-1 and the main instrumentation was 120 ° x-wire anemometry, but measurement accuracy was checked using laser Doppler anemometry.The results haveconfirmed the strong three-dimensionalityof the turbulent flow inthe roughness sublayer and the depths of the inertial sublayer (log-law region) and roughness sublayer for each surface have been determined. Spatial averaging has been used to remove the variability of the flow in the roughness sublayer due to individual obstacles and it is shown that the spatially averaged mean velocity in the inertial sublayer and roughness sublayer can,together, be described by a single log-law with a mean zero-plane displacement and roughness length for the surface, provided that the proper surface stress is known. The spatially averaged shear stresses in the inertial sublayer and roughness sublayer are compared with the surface stress deduced from form drag measurements on the roughness elements themselves.The dispersive stress arising from the spatial inhomogeneity in the mean flow profiles was deduced from the data and is shown to be negligible compared with the usual Reynolds stresses in the roughness sublayer. Comparisons have been made between a homogeneous (regular element array) surface and one consisting of random height elements of the same total volume. Although the upper limits of the inertial sublayer for both surfaces were almost identical at equivalent fetch, the roughness sublayer was much thicker for the random surface than for the uniform surface, the friction velocity and the roughness length were significantly larger and the `roughness efficiency' was greater. It is argued that the inertial sublayer may not exist at all in some of the more extreme rough urban areas. These results will provide fundamental information for modelling urban air quality and forecasting urban wind climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号