首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
提要:利用2013年春季在巴丹吉林沙漠北缘拐子湖地区的沙尘暴加强观测资料,对比分析该地区典型流动沙面晴天、扬沙和沙尘暴三种天气背景下各气象要素的变化特征及差异,同时对沙尘暴过程中近地层风沙活动特征进行分析。结果表明,随风速增加沙尘天气强度逐步提升且沙尘天气来临前风速、风向均表现出明显的调整现象,此后爆发过程中风速、风向相对稳定。随沙尘天气强度的增加气温逐渐减小且沙尘天气过程中地面呈利于沙尘起动的暖干状态,同时地面气压不断升高。悬浮的沙尘会导致拐子湖流动沙地各层地温有减小趋势,但减小程度相对较弱,使沙尘天气下各层地温仍保持良好的梯度变化和正弦型日变化趋势。拐子湖流沙地春季起沙风速为6.5m/s,输沙通量垂直分布状况在20cm左右具有明显的分段现象。地表100cm内总输沙量的50%和90%分别集中在地表20cm和56cm高度以内。观测期间整个5月地表0~100cm高度内的输沙通量为420.96kg/m。  相似文献   

2.
地形影响沙尘传输的观测和模拟研究   总被引:5,自引:1,他引:4  
文中基于观测资料和数值模拟方法,研究了东亚地形对中国沙尘传输的影响,结果表明:东亚地区沙尘天气多发区主要位于中国南疆盆地和内蒙古西部及蒙古南部.南疆盆地沙尘天气集中在盆地南缘;而蒙古、内蒙古西部沙尘天气主要出现在沙漠腹地.青藏高原东北侧到黄土高原中部是沙尘天气次多发区.蒙古、内蒙古西部沙漠腹地多发区的形成不仅由于这里提供了丰富的沙源,同时也具备了沙尘暴迅速增强的条件:阿尔泰-萨彦岭南侧的峡谷地形强迫形成峡谷急流,明显增强了该区域地面风速;萨彦龄山地南坡携带大量沙尘的向南下坡气流遇到东-西向的峡谷气流时受到阻挡形成聚集;同时,这一地区起伏的地表产生的地形波加强了地面起沙.这种大量沙尘在大气中聚集之后再进行传输的特征可以视为在大气中形成了沙尘"中继站".导致沙尘进一步向东输送的地形因素是阿尔泰-萨彦岭山地南侧的峡谷地形,而萨彦岭山地南坡的下坡气流和青藏高原东北侧的地形强迫绕流是导致沙尘向南输送的原因.由于青藏高原地形绕流的强大以及冷锋过程的相对频繁使得沙尘的向南输送更为强盛,这也是青藏高原东北侧沙尘天气多发区的形成原因.  相似文献   

3.
沙暴天气下大气中沙尘粒子空间分布特点及其微结构   总被引:24,自引:0,他引:24       下载免费PDF全文
根据对一次在阿拉善沙漠及其附近地区发生的沙尘暴天气下大气沙尘粒子的飞机观测资料,分析了3600 m以下各层的沙尘含量、粒子谱、云凝结核浓度;讨论了该次沙暴天气下沙尘垂直输送的原因及向下游传输的可能范围和不同距离处的相对沉沙量。  相似文献   

4.
中国地区沙尘气溶胶输送过程的数值模拟   总被引:8,自引:2,他引:8       下载免费PDF全文
本文建立了一个包含沙尘起沙、输送、干沉积和湿沉积过程的气溶胶输送扩散模式.并和中尺度气候模式RIEMS相连接研究了1998年1月、4月、7月和1997年10月的沙尘起沙、输送、干沉积和湿沉积的过程。计算1998年1月、4月、7月和1997年10月气溶胶浓度及其分布.并和这四个月份的平均起沙分布以及北京、郑州和南京的实例沙尘分布作了比较.结果表明我国起沙多发生在春季.同时春季也是我国沙尘强度最大的季节。沙尘在我国西北的沙地和沙漠地区起沙后.向我国的东南方向输送.在输送过程中沙尘浓度逐渐降低。  相似文献   

5.
2010年春季北京地区强沙尘暴过程的微气象学特征   总被引:3,自引:1,他引:2  
利用北京大学校园地区PM10质量浓度观测资料、中国科学院大气物理研究所325m气象塔气象要素梯度和湍流观测资料,分析了北京地区2010年3月20~22日两次强沙尘暴过程微气象学要素和沙尘参量的时空演变以及湍流输送特征,为理解北京地区强沙尘暴天气沙尘输送规律和微气象学特征提供参考。结果表明:3月20~22日强沙尘暴过程前后不同高度温度先升后降,气压和相对湿度则相反。强沙尘暴来临时,高层风速先迅速增大,低层风速增加略有滞后,风切变明显加强,PM10浓度最大值和风速极大值出现时间较吻合。强沙尘暴过境时,不同高度向下的湍流动量输送、向上的湍流热量输送和湍流动能明显加强。与3月21日非沙尘暴日相比,强沙尘暴过程湍流动量通量增加,有利于沙尘粒子的水平和垂直输送过程;由于冷锋过境,水平热通量增大;垂直热通量因白天温度垂直梯度减小而减小,夜间因逆温层被破坏而增加;水平湍流动能对湍流动能占主要贡献,垂直湍流动能仅占水平湍流动能的10%~25%。  相似文献   

6.
利用内蒙古科尔沁沙地和沈阳地区同步气象要素梯度观测和地面大气颗粒物(PM2.5和PM10)质量浓度观测资料, 分析了中国北方地区2020年5月10日一次大范围扬沙天气过程微气象学和沙尘输送特征。结果表明: 受大尺度天气系统影响, 此次沙尘天气过程中科尔沁沙地不同高度(< 20 m)风速均明显增加, 各层相对湿度和浅层地表含水量有所降低, 较强湍流动力作用配合干燥的土壤和大气环境有利于沙源地区地表大量的沙尘粒子释放到大气中。此后这些沙尘粒子随较强的西北气流集中在2—3 km以下高度向下游地区输送。受沙尘输送的影响, 沈阳地区10日小时平均PM10浓度最高达817 μg·m-3, 能见度减小至3.7 km。此外, 科尔沁沙地起沙过程中能见度与摩擦速度存在明显的反相关关系(相关系数R2=0.93), 与湍流动力学热通量相关性相对较小, 表明湍流动力作用在此次起沙过程占主导作用。  相似文献   

7.
南疆沙漠腹地夏季晴天与沙尘日小气候观测对比分析   总被引:5,自引:1,他引:4  
利用塔克拉玛干沙漠大气环境观测试验站2006年8月13-31日近地层微气象资料以及常规地面观测资料,选取晴天与沙尘日个例,采用波文比能量平衡方法,对比分析了晴天与沙尘日沙漠腹地的小气候和地表能量平衡特征.结果表明,晴天气温、地温日变化幅度均大于沙尘日,各深度地温极值出现时间滞后于沙尘日;晴天夜间近地层存在逆温,沙尘日具有等温性;晴天夜间比湿较大,白天较小,沙尘日夜间比湿变化平缓,在沙尘暴发生时,比湿急剧增大,并有弱的逆湿现象存在;沙尘日总辐射、反射辐射、净辐射和感热通量比晴天明显偏小,向下长波辐射却大于晴天,但潜热变化差异不太明显.  相似文献   

8.
首先对2004年春季最强的一次沙尘天气过程进行了简要分析,然后利用业务化的集成沙尘数值预报系统对其进行了数值预报试验,并在检验了预测结果的可用性的基础上,进一步分析了沙尘浓度、起沙量等模式输出结果的特征。结果表明:该预测系统对沙尘天气的起沙和输送过程预报能力较好;对沙尘天气的发生、发展和消亡过程有预报意义。这次过程的沙尘源地主要是蒙古国南部和中蒙边境沙地,包括毛乌素沙地、腾格里沙漠和浑善达克沙地;起沙和输送过程中各种粒子的贡献随着沙尘天气发生区域的不同而不同,这次过程中起沙量贡献主要是粒径为2~22μm的粒子,在大气中长时间长距离输送的粒子主要是粒径小于11μm的粒子。  相似文献   

9.
敦煌春季沙尘天气过程中某些参量和影响因子的变化特征   总被引:25,自引:12,他引:13  
利用中日合作"风送沙尘的形成、输送机制及其对气候与环境影响(ADEC)的研究"项目敦煌站的观测资料,分析了2001年和2002年春季沙尘天气过程中两个沙尘参量———沙尘浓度指数(DCI)和粒子数浓度(N(d))的变化以及摩擦速度(u )和风速(u)与地面风蚀起沙的关系。结果表明:可用DCI=0.2作为扬沙、浮尘等一般沙尘天气的临界值,DCI=0.4作为沙尘暴天气的临界值;沙地和农田上起沙的临界摩擦速度分别约为0.5m·s-1和0.3m·s-1,临界风速分别约为7m·s-1和3m·s-1。农田和沙地起沙临界摩擦速度的差异,导致绿洲站沙尘天气发生的频数比沙漠站大;与地面起沙量有关的总沙尘粒子数浓度N(d>0.5μm)近似与u2 成比例。  相似文献   

10.
王丽娟  赵琳娜  寿绍文  王俊超 《气象》2011,37(3):309-317
利用观测资料对2009年春季4月22-24日强沙尘暴过程的近地面气象要素(气温、气压、风速)变化和PM10进行分析.结果表明:蒙古气旋和冷锋是这次强沙尘暴的主要影响系统;沙尘暴过程前后温、压和风速有剧烈变化;PM10的强度能较好地反映沙尘暴强度.在观测资料分析基础上,利用沙尘暴数值预报系统对此次过程进行了模拟,采用模拟结果对地面沙尘浓度和起沙进行了分析.结果表明:模式能较好地模拟出这次沙尘天气的时间和空间演变特征,模拟沙尘浓度大值区与强沙尘暴的范围较为一致,比较白天早间和下午的沙尘浓度分布,发现其具有日变化;这次大范围的沙尘天气的起沙中心分别是南疆塔里木盆地、甘肃、内蒙古的西部及蒙古国南部,垂直沙通量超过50 mg·m2·s-1;沙尘浓度垂直输送的高度在550hPa以下,起沙后的沙尘粒子主要靠对流层低层的大风长距离地输送;对不同地区起沙过程贡献最大的沙尘粒子的粒径不尽相同,但是对起沙量贡献最大的是粒径在2μm相似文献   

11.
利用2011年和2013年夏秋季在青藏高原中东部开展的11架次气溶胶特征飞机观测数据,分析气溶胶数浓度、数谱及核化相关特征。结果表明:受天气系统、地形和地表影响,观测区内气溶胶数浓度(Na)和体积直径(Dv)的垂直和水平分布差异较大,Na呈西北高、东南低,Dv低层大、高层小,局地中高层有沙尘。格尔木盛行东风时,云降水对低层气溶胶有清除作用,Na和Dv明显降低,6.2 km高度和7.2~7.4 km高度的中高空受高原大风或对流影响形成沙尘;盛行西风时,低层Dv以0.5~0.8 μm为主,随高度升高和风速增大Na升高,Dv变幅较小,6.2 km高度也有沙尘;不同天气系统影响下6.5 km高度以上均输入亚微米颗粒,Na达5×103 cm-3,8.0 km高度盛行东风时比西风时Na更高,Dv更小,谱垂直分布也有以上特征,整层输入以偏北或偏西路径为主。不同过饱和度测量云凝结核数浓度(Nccn)表明,除格尔木6.0 km高度以下核化率(Nccn/Na)在21%~47%外,其他观测区平均核化率介于1%~16%,6.0~8.5 km高度的核化率总体偏低;当Na增加时核化率明显下降,且过饱和度1%~2%,-15~-5℃层或粒径1~3 μm时的核化率相对偏高。  相似文献   

12.
塔克拉玛干沙漠腹地贴地层风沙流结构研究   总被引:1,自引:0,他引:1  
利用微梯度集沙仪在塔克拉玛干沙漠腹地塔中地区实测的2014年7—8月贴地层输沙量梯度观测资料(观测高度区间0~5 mm、5~15 mm、15~35 mm、35~85 mm),对沙尘天气过程贴地层风沙流结构进行了研究。结果表明:(1)沙尘天气(沙尘暴和扬沙)过程中,随着风速的增大,各高度层输沙量也随之增大。沙尘暴天气中,风速7.5 m·s~(-1)时,15~35 mm处的百分含量超过5~15 mm处的百分含量,风速7.5 m·s~(-1)时,15~35 mm处的百分含量达到最大,其余各高度含量变化不明显。扬沙天气中,风速8.0 m·s~(-1)时,百分含量最大值出现在35~85 mm高度处,占48.9%,风速8.0 m·s~(-1)时,大小依次为:15~35 mm(49.5%)35~85 mm(31.7%)0~5 mm(12.7%)5~15 mm(9.2%)。(2)两种天气过程中,沙粒的平均粒径在垂直高度上均呈现先减小后增大的趋势。粒径峰值均处在125~250 um,极细砂含量最高,细砂次之。与扬沙天气相比,沙尘暴天气过程中极细砂、细砂、中砂在各高度层上的含量略微下降,粉尘含量有所升高。  相似文献   

13.
风蚀起沙的影响因子及其变化特征   总被引:19,自引:4,他引:15  
以敦煌地区的戈壁和绿洲为例,对地表土壤风蚀起沙的临界摩擦速度及其变化特征和风蚀起沙过程中地表土壤的粒子尺度分布及其对垂直尘粒通量的影响进行了分析研究。结果表明,地表土壤风蚀起沙的临界摩擦速度随土壤水分含量和植被覆盖度的增大而增大,随粒子尺度的变化是先减小后增大,在中间某一尺度处有一最小值;土壤的人工利用和管理对临界摩擦速度也有着相当大的影响,风蚀起沙过程中,地表土壤的粒子尺度分布随时间发生变化,瞬时的粒子尺度分布不同于平均的粒子尺度分布,利用前者计算得到的垂直尘粒通量对摩擦速度的变化更敏感,利用后者计算得到的垂直尘粒通量偏大。  相似文献   

14.
Based upon comparisons between published experimental data and simulated results on the vertical sand flux distribution in the saltation layer, Shao’s similarity saltation model has been greatly improved by correcting the average vertical particle lift-off velocity and using a more suitable universal roughness length. By the improved model, the vertical sand flux profile over the bare, dry and loose uniform sandy surface, which is quite representative of real desert surfaces, can be reproduced very well. Meanwhile, the surface transport rate and the characteristic and average saltation heights have been simulated and analyzed in detail, disclosing their relationships with friction velocity, particle size and roughness length, and the possible underlying mechanisms. Besides, the average particle lift-off velocity and the average mean vertical aerodynamic action upon the ascending particle, which determine the saltation process, are explicitly expressed by parameters involved in the similarity model, and their relationships with friction velocity, particle size and roughness length are also described concisely. The corrected average particle lift-off velocity makes it possible to investigate the characteristic particle trajectory, whose initial velocity equals the average lift-off velocity, so as to estimate the average particle against surface impacting velocity and the average aerodynamic action upon the saltation process.  相似文献   

15.
精细准确预报大风风速对于风功率预报和风灾防御具有重要意义。本文以上海市域为研究区域,基于形态学方法估算上海市域空气动力学粗糙度分布,并通过近地层分层风速插值方法推算上海市域10 m高度精细风速分布。针对2016年1月23日20时—24日20时一次大风过程开展实证检验,对比分析降尺度模拟风速、地面实测风速、ECMWF预报10 m风速的空间分布、时间变化以及垂直廓线特征。结果表明,该方法可以较好地模拟上海市域风速大小的精细空间分布,模拟精度总体上表现为中心城区精度高、郊区精度稍低,但相比于ECMWF预报10 m风速分布有了明显提高,可以为风速的精细化预报提供技术支撑。  相似文献   

16.
利用2017、2019年7月塔克拉玛干沙漠腹地GPS探空观测数据和地面观测资料,对比分析了沙漠腹地夏季晴天和沙尘暴天气大气边界层结构变化特征。结果表明:晴天和沙尘暴天气大气边界层结构显著不同,两者的位温、风速和比湿垂直分布规律差异较大。晴天大气边界层各气象要素垂直分布较为均一,形成深厚的对流边界层,高度可达5000m,夜间稳定边界层一般在500m左右。沙尘暴天气边界层内各气象要素垂直分布变化较大,白天对流边界层在1500m左右,而夜间稳定边界层在1000m左右。在陆面过程中,晴天净辐射强烈,地表增温迅速,近地层感热通量能量充足,为对流运动和湍流运动提供了热力条件,是形成深厚的对流边界层主要因素。而沙尘暴天气因云和沙尘颗粒的影响,阻挡了到达地表的辐射轻度,减弱了外部的热力条件,同时大尺度天气系统冷平流提供了充足的动力条件,迫使低空2000m高度范围的温度减小,风速增大,并携带大量的水汽,导致气象要素垂直分布特征改变,并最终形成了沙尘暴天气独特的大气边界层结构特征。  相似文献   

17.
18.
通过野外监测系统获取的试验数据,对拐子湖地区2011年4月份一次强沙尘暴过程中贴地层微气象要素和输沙进行分析,得出如下结论:大气高温干燥,地表高温低湿、气压下降,风速增大是沙尘暴来临的前兆;沙尘暴过程中风向和风速相对稳定,气压、水汽压和相对湿度都会明显下降;地温下降速度较慢,土壤湿度略有上升;输沙量主要集中于距地表50cm以内高度层,在0-20cm高度层里输沙量呈增大趋势,20cm以上随着高度升高含沙量逐渐下降;跃移沙粒输沙量的空间分布与风向频率既有相似性,又有差异性;蠕移输沙量的方向分布比较复杂,同风向分布有显著的差异。这些结果对沙尘暴预报和沙源区的防风治沙有指导意义。  相似文献   

19.
北京北郊冬季大风过程湍流通量演变特征的分析研究   总被引:4,自引:0,他引:4  
张宏升  刘新建  朱好 《大气科学》2010,34(3):661-668
利用中国科学院大气物理研究所325 m气象观测塔1993年12月~1994年1月大气边界层实验资料, 计算分析了大风过境过程中47 m和120 m高度湍流通量演变特征及其影响因子, 以及与风速、 稳定度等参数的关系。结果表明: 大风过程对近地面层的物质能量输送有着重要影响, 大风之前出现短时间动量上传和热量下传; 大风过程中的湍流通量数值明显高于过境后, 水平方向湍流通量数值和能量增加幅度大于垂直方向; 当风速大于临界值5 m/s时, 湍流通量与风速、 湍流动能的相关迅速增大; 湍流谱特征表现为湍流能量的低频部分增加、 湍流谱曲线变宽; 大风能强烈影响近地面层的能量收支。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号