首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
东亚地区云垂直结构的CloudSat卫星观测研究   总被引:16,自引:5,他引:11       下载免费PDF全文
彭杰  张华  沈新勇 《大气科学》2013,37(1):91-100
本文利用卫星CloudSat同时结合了与其同轨道的卫星CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)2007至2009年3年的观测资料,将东亚地区划分为六个研究区域,着重研究了东亚地区云垂直分布的统计特征.结果表明:东亚地区不同高度的云量之和具有明显的季节变化趋势,夏季最大,春秋次之,冬季最小.海洋上空的单层云量最大值出现在冬季,而在陆地上空则出现在夏季.从云出现概率来看,东亚地区单层云出现的概率在春、夏、秋、冬季节依次为52.2%,48.1%,49.2%和51.9%,而多层(2层和2层以上)云出现的概率在春、夏、秋、冬季节分别为24.2%,31.0%,19.7%,15.8%.云出现的总概率和多层云出现的概率,在六个区域都呈现出夏季最大,冬季最小;对4个季节都呈现出东亚南部比东亚北部大,海洋上空比陆地上空大的特点,表明云出现的总概率的季节变化主要由多层云出现的概率的变化决定.东亚地区云系统中最高层云云顶的高度,在夏季最高,为15.9 km,在冬季最低,为8.2 km;在东亚南部和海洋上空较高,平均为15.1 km;在东亚北部较低,平均为12.1 km,且呈现东亚南北部之间差异较大的特点.东亚地区云系统的云层厚度基本位于1 km到3 km之间,且夏季大,冬季小;对同一季节,不同区域的云层厚度差别较小;当多层云系统中的云层数目增加时,云层的平均厚度减少,且较高层的云层平均厚度大于较低层的.云层间距的概率分布基本呈单峰分布,出现峰值范围的云层间距在1到3 km之间,各区域之间没有明显差别,季节变化也不大.本文的研究为在气候模式中精确描述云的垂直结构提供了有用的参数化依据.  相似文献   

2.
黄萍  李刚  韩迁立 《贵州气象》2014,38(4):13-16
该文利用云南蒙自、腾冲探空站的高空气象观测资料进行云垂直结构分析,得出了较合理的云层垂直结构判定方法,并统计了云频率、云厚和云高等相关要素,得到以下主要结论:1通过探空相对湿度和温度露点差阈值,能够有效分辨云底、云顶和云夹层。2蒙自、腾冲夏季云天出现的频率达到100%,冬、春季节频率不到50%;冬季云状以低云为主,其他季节低云和高云同时存在的情况较多。3各类云高度没有显著的季节变化,而云厚度表现为夏半年明显高于冬半年,其中中云、低云较厚、高云较薄,云夹层厚度冬春季节较大。4低云云底高度01时和07时较低,云顶高度07时和13时较高,云厚度19时较小;中云01时和07时云底低、云顶高,相应的云厚度大于13时和19时,具有一定的日变化规律。  相似文献   

3.
青藏高原(下称高原)地区是中国气候的敏感区,为准确认识其上空的卷云特征,利用MODIS的M YD06二级云产品数据,对高原地区卷云的概率分布、云顶高度、粒子有效半径以及光学厚度进行了统计分析。结果表明:(1)卷云在3月和4月出现概率最高,10 12月出现概率最低。在全年中,卷云概率分布为双峰型,1 4月为一个高峰期,7 8月为另一个高峰期;两个低值期出现在5 6月和912月。(2)6月和10月卷云云顶高度的概率分布会产生显著的变化。卷云云顶高度平均最大值出现在7 8月,最小值出现在1 2月。(3)卷云的粒子有效半径主要分布在5~40μm之间,15~25μm间概率最大。卷云粒子尺度平均最大值出现在8 9月,最小值出现在12月至次年2月。(4)卷云的光学厚度主要分布在0~40之间,0~10间概率最大。卷云光学厚度最大值出现在8 9月,最小值出现在12月至次年2月。  相似文献   

4.
青藏高原(下称高原)地区是中国气候的敏感区,为准确认识其上空的卷云特征,利用MODIS的M YD06二级云产品数据,对高原地区卷云的概率分布、云顶高度、粒子有效半径以及光学厚度进行了统计分析。结果表明:(1)卷云在3月和4月出现概率最高,10 12月出现概率最低。在全年中,卷云概率分布为双峰型,1 4月为一个高峰期,7 8月为另一个高峰期;两个低值期出现在5 6月和912月。(2)6月和10月卷云云顶高度的概率分布会产生显著的变化。卷云云顶高度平均最大值出现在7 8月,最小值出现在1 2月。(3)卷云的粒子有效半径主要分布在5~40μm之间,15~25μm间概率最大。卷云粒子尺度平均最大值出现在8 9月,最小值出现在12月至次年2月。(4)卷云的光学厚度主要分布在0~40之间,0~10间概率最大。卷云光学厚度最大值出现在8 9月,最小值出现在12月至次年2月。  相似文献   

5.
利用河北省、河南省和山西省2013—2014年的每日10—15时逐时FY2E卫星反演得到的云结构特征参数和地面小时降水,统计分析了云顶高度、云顶温度、云光学厚度和云粒子有效半径等4类云结构特征参数与地面降水的关系。主要结论有:随着云光学厚度的增加,降水概率呈增加趋势。云光学厚度比其他云参数对降水更具有指示意义,当云光学厚度大于20时,降水概率显著增大。双参数、多参数组合下,对地面是否出现降水的判断和识别要优于单个云参数的判别结果。4类云参数中,云光学厚度与降水强度呈正相关关系,对降水强度的影响最为显著;云顶温度和云顶高度对降水强度的影响次之;云粒子有效半径与降水强度的关系不明显。地面降水时,当云光学厚度小于20或云光学厚度介于21—30、云顶温度大于-15℃时,出现小雨的概率最大;当云光学厚度介于21—30、云顶温度小于-15℃或云光学厚度大于30、云顶温度大于-30℃时,出现中雨的概率最大;当云光学厚度大于30、云顶温度小于-30℃时,出现大雨或暴雨的可能性最大。云光学厚度、云顶温度、云顶高度和云粒子有效半径等云结构特征参数组合使用,对判断降水概率和降水强度具有较好的指示作用。  相似文献   

6.
基于CloudSat资料的中国及周边地区各类云的宏观特征分析   总被引:10,自引:2,他引:8  
利用2006年7月—2009年4月的CloudSat2B-CLDCLASS云分类资料,针对中国及周边地区(0°—60°N,70°—140°E)各类云量和垂直结构参数的地理分布及季节变化进行了统计分析,并根据气候特征的地域差异从该区域选出8个子区域,逐区统计了各类云的垂直结构特征。结果表明,各类云量的分布存在较明显的区域差异和季节变化;青藏高原和帕米尔高原地区卷云、高层云和高积云等中高云的高度和厚度相对较小,陆上深对流云的云底高度大于海上,而热带、副热带地区云顶高度大于中纬度地区;除积云、层积云和雨层云外,中国南方地区其他各类云的云层厚度均大于北方地区;除了层积云外,其他各类云的云顶高度在各区域都存在比较明显的季节变化,低云云底高度的季节变化和区域差异都很小,而中高云的云底高度除了在印度洋季风区、南海和西太平洋地区季节差异较小外,其他地区季节差异较明显,各个地区在任何季节内,深对流云厚度最大,层积云最小;各类云出现频率随高度的分布具有较明显的区域差异;卷云与高积云的相关性比较强,经常相伴出现,夏季更加明显,而雨层云和深对流云之间相互排斥,两者几乎不可能同时出现。此外,统计中国及周边地区各类云的水平均一性发现,中...  相似文献   

7.
云特征参数与降水相关性的研究   总被引:3,自引:0,他引:3  
利用FY2C卫星和探空反演得到的云结构特征参数,结合地面降水,研究了云顶高度、光学厚度、云粒子有效半径和云厚度等云结构参数与降水的关系,并分类研究了层状云和对流云在不同降水强度情况下,云参数的频数分布规律及其与降水的关系。结果表明:通常云厚大于5km、云底较低、云粒子有效半径较大时,地面易出现降水,若云顶高于10km、云光学厚度大于20且云中无夹层或夹层稀薄时,地面雨强多大于1mm/h;对于层状云降水,当云光学厚度大于17时,地面出现降水的概率较大,随光学厚度值增加,地面雨强呈增大趋势;对于对流云降水,云顶高度和光学厚度相关性较好,云光学厚度大于17且云顶高于7km时,地面出现降水的概率较大,当光学厚度大于20时,地面雨强明显增大;层状云和对流云的降水概率均随云顶高度和光学厚度的增加而增大,降水概率与云光学厚度的相关性更为密切,光学厚度小于10的云很难产生降水,而云光学厚度大于20时,层状云和对流云的降水概率都会显著增加;综合云体的高度、厚度和云光学厚度等云参量的组合特征,对分析判断地面降水落区和降水强度更加有效。  相似文献   

8.
王旻燕 《气象科技》2010,38(4):403-408
对云层垂直结构的准确参数化描述是数值天气预报模式准确计算长短波辐射通量、辐射加热率廓线、云反射率、云辐射效应等参数的重要基础,但地基观测数据无法对模式预报的云层垂直分层情况进行验证。文章基于卫星资料Collection5版本的MODIS云产品MOD06,利用国际上能够较准确判别云层垂直分层的一个新算法,以反演的高、中、低云发生频率和云顶气压结果,评估美国国家环境预报中心(NCEP)北美中尺度模式NAM的云层垂直结构。2006年7~10月北美地区(153°~48°W,12°~62°N)的评估结果表明:①卫星反演和模式预报的高、中、低云的云量区域分布比较相似,尤其是高云。热带太平洋地区模式预报高云量大于卫星反演值。模式预报的低云在墨西哥及北美大陆、大西洋地区更多。②卫星反演和模式预报中云发生频率的差异最小,模式预报高云和低云发生频率峰值比卫星反演的峰值更大,且云顶出现的高度更高。③模式预报中云量和低云量的纬度平均值比卫星反演的高,尤其是低云量。NAM的云参数化有待于进一步改进。  相似文献   

9.
利用宁夏六盘山气象站2017年9月至2018年8月的Ka波段云雷达观测资料,统计分析了六盘山顶不同云的出现频率及宏观特征。结果表明:六盘山顶云出现频率最高值在7月,为61%,最低值在12月,为26%;按云层数划分,六盘山顶出现的云主要以1层云、2层云及3层云为主,相对总云的月平均出现频率分别为68%—86%、14%—27%及0.4%—4.8%;按云底高度及云层厚度划分,六盘山顶低云、中云、高云及直展云相对总云的月平均出现频率分别为29%—53%、14%—58%、6%—22%及2%—20%。云底高度在冬春季节高于夏秋季节,云顶高度在夏秋季节高于冬春季节,云层厚度为1.6—3.6 km,年变化特征与云顶高度类似。整体来看,春、夏、秋季云厚在白天大于夜间,冬季云厚在夜间大于白天,其中夏、秋季云厚日变化特征较为明显。  相似文献   

10.
应用2006年5月至2013年5月7年的Cloud Sat卫星观测资料,针对青藏高原上空不同高度、不同季节8类云(卷云、高层云、高积云、层云、层积云、积云、雨层云、浓积云)的发生频率,分析研究了青藏高原地区云的水平和垂直分布特征及其物理成因,为数值预报模式对云系模拟能力的评估提供了有效的验证信息。研究表明:青藏高原云的发生频率为35%,其中:低云的频率最大,接近21%;中云次之,频率14%;高云的频率最小。垂直分布上,低云最大频率的高度为5~6 km,中云为7~8 km,高云为11~12 km。水平分布上,高原东南部、西北部云发生频率较高,是高原的两个相对多云中心。低云与总的云频率水平分布基本一致;中云是高原北部、中部频率高,南部低,与低云明显不同;高云主要是夏季在高原南部频率高。从不同季节来看,冬季高原西部的低云频率高;春季高原中北部的中云频率高,西部和东南部的低云频率高;夏季南部的低云和高云频率高;秋季云发生频率都很低。在物理成因上,低云的形成主要是地形抬升作用,中云的形成与高原热力作用相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号