首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effects of small‐scale surface inhomogeneities on the turbulence structure in the convective boundary layer are investigated using a high‐resolution large‐eddy simulation model. Surface heat flux variations are sinusoidal and two‐dimensional, dividing the total domain into a checkerboard‐like pattern of surface hot spots with a 500‐m wavelength in the x and y directions, or 1/4 of the domain size. The selected wind speeds were 1 and 4 m s‐l, respectively. As a comparison, a simulation of the turbulence structure was performed over a homogeneous surface.

When the wind speed is light, surface heat flux variations influence the horizontally averaged turbulence statistics, including the higher moments despite the small characteristic length of the surface perturbation. Stronger mean wind speeds weaken the effects of inhomogeneous surface conditions on the turbulence structure in the convective boundary layer.

Results from conditional sampling show that when the mean wind speed is small, weak mean circulations occur, with updraft branches above the high heat flux regions and down‐draft branches above the low heat flux regions. The inhomogeneous surface induces significant differences in the turbulence statistics between the high and low heat flux regions. However, the effect of the surface perturbations weaken rapidly when the mean wind speed increases. This research has implications in the explanation of the large‐scale variability commonly encountered in aircraft observations of atmospheric turbulence.  相似文献   

2.
Large-eddy simulation is used to study secondary circulations in the convective boundary layer modulated as a result of horizontally varying surface properties and surface heat fluxes over flat terrain. The presence of heat flux heterogeneity and its alignment with respect to geostrophic wind influences the formation, strength and orientation of organized thermals. Results show boundary-attached roll formation along heat flux maxima in the streamwise direction. The streamwise organization of the updrafts and downdrafts formed downwind of heterogeneities leads to counter-rotating secondary circulations in the crosswind plane. The distribution of resolved-scale pressure deviations shows large pressure gradients in the crosswind plane. Spanwise and vertical velocity variances and heat flux profiles depict considerable spatial variability compared to a homogeneous forest simulation. Secondary circulations are observed for various ambient wind scenarios parallel and perpendicular to heterogeneities. In the presence of increased wind speed, thermals emerging from the heat flux heterogeneity are elongated, and organize along and downwind of large-scale heterogeneity in the streamwise direction. Simulation with a reduced heat flux shows a shallower circulation with a lower aspect ratio. Point measurements of heat flux inside the roll circulation could be overestimated by up to 15–25% compared to a homogeneous case.  相似文献   

3.
Abstract

Airborne measurements of mean wind velocity and turbulence in the atmospheric boundary layer under wintertime conditions of cold offshore advection suggest that at a height of 50 m the mean wind speed increases with offshore distance by roughly 20% over a horizontal scale of order 10 km. Similarly, the vertical gust velocity and turbulent kinetic energy decay on scales of order 3.5 km by factors of 1.5 and 3.2, respectively. The scale of cross‐shore variations in the vertical fluxes of heat and downwind momentum is also 10 km, and the momentum flux is found to be roughly constant to 300 m, whereas the heat flux decreases with height. The stability parameter, z/L (where z = 50 m and L is the local Monin‐Obukhov length), is generally small over land but may reach order one over the warm ocean. The magnitude and horizontal length scales associated with the offshore variations in wind speed and turbulence are reasonably consistent with model results for a simple roughness change, but a more sophisticated model is required to interpret the combined effects of surface roughness and heat flux contrasts between land and sea.

Comparisons between aircraft and profile‐adjusted surface measurements of wind speed indicate that Doppler biases of 1–2 m s?1 in the aircraft data caused by surface motions must be accounted for. In addition, the wind direction measurements of the Minimet anemometer buoy deployed in CASP are found to be in error by 25 ± 5°, possibly due to a misalignment of the anemometer vane. The vertical fluxes of heat and momentum show reasonably good agreement with surface estimates based on the Minimet data.  相似文献   

4.
The upward transfer of heat from ocean to atmosphere is examined for an Arctic lead, a break in the Arctic ice which allows contact between the cold atmosphere and the relatively warm ocean. We employ a large-eddy model to compute explicitly the three-dimensional turbulent response of the atmosphere to a lead of 200 m width. The surface heat flux creates a turbulent plume of individual quasi-random eddies, not a continuous updraft, which penetrate into the stable atmosphere and transport heat upward.Maximum updraft velocities and turbulence occur downwind of the lead rather than over the lead itself, because the development time of an individual thermal eddy is longer than its transit time across the lead. The affected vertical region, while shallow over the lead itself, grows to a height of 65m at 600 m downwind of the lead; beyond that, the depth of the turbulent region decreases as the eddies weaken. The maximum vertical turbulent heat flux occurs at the downwind edge of the lead, beyond which a relative maximum extends upward into the plume. Negative surface heat flux immediately downwind of the lead creates a growing stable layer, but above that internal boundary layer the turbulent heat flux is still positive. Updraft maxima are typically 28 cm/s, but compensating downdrafts result in time-averaged vertical velocities of less than 1 cm/s in the plume. Conditional sampling separates the updraft and downdraft contributions. Formulas for the horizontal eddy development distance and for the vertical plume penetration height are presented. The relative importance of mean and turbulent transport is compared for both vertical and horizontal heat transfer: turbulence dominates the vertical heat transport whereas mean advection dominates the horizontal transport, these offsetting transports producing a quasi-stationary state.  相似文献   

5.
We have conducted large-eddy simulations (LES) of the atmospheric boundary layer with surface heat flux variations on a spatial scale comparable to the boundary layer depth.We first ran a simulation with a horizontally homogeneous heat flux. In general the results are similar to those of previous large-eddy simulations. The model simulates a field of convective eddies having approximately the correct velocity and spatial scales, and with the crucial property that kinetic energy is transported vigorously upwards through the middle levels. However, the resolved temperature variance is only about half what is observed in the laboratory or the atmosphere. This deficiency — which is shared by many other large-eddy simulations — has dynamic implications, particularly in the pressure/temperature interaction terms of the heat flux budget. Recent simulations by other workers at much higher resolution than ours appear to be more realistic in this respect.The surface heat flux perturbations were one-dimensional and sinusoidal with a wavelength equal to 1.3 times the boundary-layer depth. The mean wind was zero. Results were averaged over several simulations and over time. There is a mean circulation, with ascent over the heat flux maxima (vertical velocity ~0.1w *) and descent over the heat flux minima. Turbulence is consistently stronger over the heat flux maxima. The horizontal velocity variance components (calculated with respect to the horizontal average) become unequal, implying that convective eddies are elongated parallel to the surface heat flux perturbations.A consideration of the budgets for temperature and velocity suggests several simplifying concepts.The research reported in this paper was conducted while the first author was on study leave at Colorado State University.  相似文献   

6.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

7.
Wind-turbine-wake evolution during the evening transition introduces variability to wind-farm power production at a time of day typically characterized by high electricity demand. During the evening transition, the atmosphere evolves from an unstable to a stable regime, and vertical stratification of the wind profile develops as the residual planetary boundary layer decouples from the surface layer. The evolution of wind-turbine wakes during the evening transition is examined from two perspectives: wake observations from single turbines, and simulations of multiple turbine wakes using the mesoscale Weather Research and Forecasting (WRF) model. Throughout the evening transition, the wake’s wind-speed deficit and turbulence enhancement are confined within the rotor layer when the atmospheric stability changes from unstable to stable. The height variations of maximum upwind-downwind differences of wind speed and turbulence intensity gradually decrease during the evening transition. After verifying the WRF-model-simulated upwind wind speed, wind direction and turbulent kinetic energy profiles with observations, the wind-farm-scale wake evolution during the evening transition is investigated using the WRF-model wind-farm parametrization scheme. As the evening progresses, due to the presence of the wind farm, the modelled hub-height wind-speed deficit monotonically increases, the relative turbulence enhancement at hub height grows by 50%, and the downwind surface sensible heat flux increases, reducing surface cooling. Overall, the intensifying wakes from upwind turbines respond to the evolving atmospheric boundary layer during the evening transition, and undermine the power production of downwind turbines in the evening.  相似文献   

8.
A parallelized large-eddy simulation model has been used to investigate the effects of two-dimensional, discontinuous, small-scale surface heterogeneities on the turbulence structure of the convective boundary layer.Heterogeneities had a typical size of about the boundary-layer heightzi. They were produced by a surface sensible heat flux pattern ofchessboard-type and of strong amplitude as typical, e.g., for the marginalice zone. The major objectives of this study were to determinethe effects of such strong amplitude heat flux variations and to specify theinfluence of different speeds and directions of the background wind.Special emphasis has been given to investigate the secondary circulations induced by the heterogeneities by means of three-dimensional phase averages.Compared with earlier studies of continuous inhomogeneities, the same sizeddiscontinuous inhomogeneities in this study show similar but stronger effects.Significant changes compared with uniform surface heating are only observedwhen the scale of the inhomogeneities is increased to zi. Especially the vertical energy transport is much more vigorous and even the mean emperature profile shows a positive lapse rate within the whole mixed layer. However, the effects are not directly caused by the different shape of the inhomogeneities but can mainly be attributed to the large amplitude of the imposed heat flux,as it is typical for the partially ice covered sea during cold air outbreaks.The structure of the secondary flow is found to be very sensitive to the wavelength and shape of the inhomogeneities as well as to the heatflux amplitude, wind speed and wind direction. The main controlling parameter is the near-surface temperature distribution and the related horizontal pressure gradient perpendicular to the main flow direction. The secondary flow varies from a direct circulation with updraughts mainly above the centre of the heated regions to a more indirect circulation with updraughts beneath the centre and downdraughts above it. For background winds larger than 2.5 m s–1 a roll-like circulation pattern is observed.From previous findings it has often been stated that moderate backgroundwinds of 5 m s–1 eliminate all impacts of surface inhomogeneitiesthat could potentially be produced in realistic landscapes. However, this studyshows that the effects caused by increasing the wind speed stronglydepend on the wind direction relative to the orientation of theinhomogeneities. Secondary circulations remain strong, even for abackground wind of 7.5 m s–1, when the wind direction is orientatedalong one of the two diagonals of the chessboard pattern. On the otherhand, the effects of inhomogeneities are considerably reduced, even undera modest background wind of 2.5 m s–1, if the wind direction isturned by 45°. Mechanisms for the different flow regimesare discussed.  相似文献   

9.
The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance of the atmospheric heat flux in the surface energy budget. This increases the temperature variation of the surface forcing the near-surface temperature gradient and thereby the diabatic heat flux to higher values than are typical on the Earth, resulting in turn in a deeper daytime boundary layer. As wind speed is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T*, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow for the same surface features.The scaling laws have been validated analysing the Martian surface-layer data for the relations between the power spectra of wind and temperature turbulence and the corresponding mean values of wind speed and temperature. Usual spectral formulations were used based on the scaling laws ruling the Earth atmospheric surface layer, whereby the Earth's atmosphere is used as a standard for the Martian atmosphere.  相似文献   

10.
Boundary-Layer Adjustment Over Small-Scale Changes of Surface Heat Flux   总被引:1,自引:0,他引:1  
Four months of eddy correlation data collected over a grass field and a nearby sage brush community are analyzed to examine the adjustment of the boundary-layer structure as it flows from the heated brush to the snow-covered grass. The grass site includes a 34-m tower with seven levels of eddy correlation data. The midday heat flux over the snow-covered grass and bare ground surfaces is often downward particularly with melting conditions, while the corresponding heat flux over the brush is almost always upward. For most of these cases, a stable internal boundary layer over the snow is well defined in terms of vertical profiles of the buoyancy flux over the snow-covered grass. The stable internal boundary layer is generally embedded within a deeper layer of flux divergence corresponding to increasing upward heat flux with height above the internal boundary layer. With thin snow cover, the surface heat flux over the grass is weak upward due to heating of grass protruding above the snow so that the flow adjusts to a decrease of the upward surface heat flux in the downwind direction. This common case of an adjusting boundary layer contrasts with the formation of an internal boundary layer due to a change of sign of the surface heat in flux the downwind direction. The adjustment of the boundary layer to the decrease of the surface heat flux leads to vertical divergence of the upward heat flux in contrast to the usual heated boundary layer over homogeneous surfaces. The consequences of the cooling due to the vertical divergence of the heat flux are discussed in terms of the heat budget of the adjusting and internal boundary layers.  相似文献   

11.
Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study   总被引:1,自引:1,他引:0  
Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12–15 °C and heating up the test section floor to 73–75 °C. The freestream wind speed was set at about 2.5 m s?1, resulting in a bulk Richardson number of ?0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2–3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2–20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that in the undisturbed CBL inflow. This study represents the first controlled wind-tunnel experiment to study the effects of the CBL on wind-turbine wakes. The results on decreased velocity deficit and increased turbulence in wind-turbine wakes associated with atmospheric thermal stability are important to be taken into account in the design of wind farms, in order to reduce the impact of wakes on power output and fatigue loads on downwind wind turbines.  相似文献   

12.
Data from the Öresund experiment are used to investigate the structure of the stably stratified internal boundary layer (SIBL) which develops when warm air is advected from a heated land surface over a cooler sea. The present study is based on a theory developed by Stull (1983a, b, c). He proposed that the turbulence and the mean structure of the nocturnal boundary layer is controlled by the time-integrated value of surface heat flux and that the instantaneous heat flux is of less importance.Dimensional arguments are used to define simple, physically consistent, temperature, velocity and length scales. The dimensionless surface heat flux has a high value immediately downwind of the shoreline and it decreases rapidly in magnitude with increasing distance from the coast. Farther away, it is essentially constant. The dimensionless potential temperature change exhibits an exponential profile. It is estimated that turbulence accounts for 71% of boundary-layer cooling while clear-air radiational cooling is responsible for the remaining 29%.Finally it is found that theoretical predictions for the height of the SIBL are in a good agreement with observations.  相似文献   

13.
14.
边界层对流对示踪物抬升和传输影响的大涡模拟研究   总被引:3,自引:1,他引:2  
利用"西北干旱区陆气相互作用野外观测实验"加密观测期间敦煌站的实测资料以及大涡模式, 通过一系列改变地表热通量和风切变的敏感性数值试验, 分析了地表热通量和风切变对边界层对流的强度、形式, 以及对对流边界层结构和发展的影响。模拟结果显示风切变一定, 增大地表热通量时, 由于近地层湍流运动增强, 向上输送的热量也较多, 使对流边界层变暖增厚, 而且边界层对流的强度明显增强, 对流泡发展的高度也较高。当地表热通量一定, 增大风切变时, 由于风切变使夹卷作用增强, 将逆温层中的暖空气向下卷入混合层中, 使对流边界层增暖增厚, 但是对流泡容易破碎, 对流的强度也较弱。另外通过在模式近地层释放绝对浓度为100的被动示踪物方法, 用最小二乘法定量地分析了地表热通量和风切变分别与示踪物抬升效率和传输高度的关系。分析结果表明, 风切变小于10.5×10-3 s-1时, 增大地表热通量加强了上层动量的下传, 使示踪物的抬升效率也线性增大;地表热通量小于462.5 W m-2时, 增大风切变减弱了边界层对流的强度, 从而使示踪物的抬升效率减弱。当风切变一定时, 示踪物的平均传输高度随地表热通量增加而增大, 而地表热通量一定, 只有风切变大于临界值时, 示踪物平均传输高度才随风切变的增加而增大, 而临界风速的大小由地表热通量决定。  相似文献   

15.
成都精细下垫面信息对城市气象影响的模拟试验   总被引:5,自引:1,他引:4       下载免费PDF全文
肖丹  陈静  陈章  张波 《气象》2011,37(3):298-308
为了提高成都市精细化天气预报水平,使用成都地区精细下垫面土地利用资料,在WRF中耦合了单层城市冠层模式,对2008年7月6 日晴空背景下的成都城市气象特征进行了模拟,并和使用旧土地利用资料、slab模式的模拟结果进行了对比分析.模拟结果表明城区因为不透水下垫面的增加,使得地表蒸发和地表水汽通量显著减小,潜热通量减小,感...  相似文献   

16.
Abstract

Airborne measurements in the atmospheric boundary layer (ABL) above the marginal ice zone (MIZ) on the Newfoundland Shelf reveal strong lateral variations in mean wind, temperature and the vertical fluxes of heat and momentum under conditions of cold, off‐ice wind. Flux measurements in (and near) the surface layer indicate that the neutral 10‐m drag coefficient depends on ice concentration, ranging from 2 × 10‐3 at 10% coverage to 5 × 10‐3 at 90%. Furthermore, cross‐ice‐edge transects consistently show increasing wind speed, temperature and heat flux in the off‐ice direction, but the momentum flux may either increase or decrease, depending on the relative importance of surface buoyancy flux and roughness. For the conditions encountered in this experiment, it appears surface wave maturity does not have a significant influence on the drag coefficient in fetch‐limited regimes near the ice edge.  相似文献   

17.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

18.
Vertical dispersion in the neutral surface layer is investigated using a Markov Chain simulation procedure. The conceptual basis of the procedure is discussed and computation procedures outlined. Wind and turbulence parameterizations appropriate to the neutral surface layer are considered with emphasis on the Lagrangian time scale. Computations for a surface release are compared with field data. Good agreement is found for the variation of surface concentration and cloud height to distances 500 m downwind of the source. The functional form of the vertical concentration profile is examined and an exponential with exponent ∼1.6 is found to give the best fit with simulations. For elevated releases, it is demonstrated that an initial dip of the mass mean height from the simulation can be normalized for various release heights using a non-dimensionalized downwind coordinate incorporating advective wind speed and wind shear. The vertical distribution standard deviation (σz), as employed in Gaussian models, shows a fair degree of independence with source height but close examination reveals an optimum source height for maximum σz at a given downwind distance,x. This source height increases with downwind distance. Also the simulations indicate that vertical wind shear is more important than vertical variation of Lagrangian time scale close to the source, with a reverse effect farther downwind.  相似文献   

19.
冬季城市边界层风场和温度场结构分析   总被引:15,自引:1,他引:15  
桑建国  刘万军 《气象学报》1990,48(4):459-468
本文根据沈阳地区大气环境容量研究中1984年12月所进行的观测,对沈阳城市边界层的流场和温度场结构做了分析。得出了冬季城市边界层的一些特征。当地面风速微弱时,热岛效应显著。边界层低层辐合抬升,在城市下风边缘可能出现反向气流。当风速较强时,城市的摩擦效应占优势,城市上风部分辐合抬升,下风部分辐散下沉。观测分析还表明,城市建筑对气流的阻滞作用可伸展到几百米的高度。夜间微风时,接地逆温层厚度可达200m,城市内边界层从上风边缘起开始发展,厚度可达100m。白天风力微弱时,重烟尘污染可导致城市冷岛,并推迟对流边界层的发展。  相似文献   

20.
Using the sounding data of wind, temperature, and humidity in the boundary layer and micrometeorological data on the earth's surface observed in the same period in Dunhuang arid region of Northwest China,this paper researches characteristics of potential temperature, wind, and humidity profiles, confirms the structure and depth of thermodynamic boundary layer in Dunhuang region, and analyzses the relationship of depth of thermodynamic boundary layer with surface radiation, buoyancy flux as well as wind speed and wind direction shear in the boundary layer. The results show that the maximum depth of diurnal convective boundary layer is basically above 2000 m during the observational period, many times even in excess of 3000 m and sometimes up to 4000 m; the depth of nocturnal stable boundary layer basically maintains within a range of 1000-1500 m. As a whole, the depth of atmospheric boundary layer is obviously bigger than those results observed in other regions before. By analyzing, a preliminary judgement is that the depth of atmospheric thermodynamic boundary layer in Dunhuang region may relate to local especial radiation characteristics, surface properties (soil moisture content and heat capacity) as well as wind velocity shear of boundary layer, and these properties have formed strong buoyancy flux and dynamic forcing in a local region which are fundamental causes for producing a super deep atmospheric boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号