首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
利用GMS-5卫星水汽通道资料分析了1995年夏秋季热带对流层中上层水汽场的分布及其变化。分析表明:南印度洋-澳大利亚-南城市平洋地区是夏秋季对流层中上层最好干的地区,赤道太平洋、北太平洋是相对干区;夏秋季南亚和中国南部是对流层中上层最潮湿的地区,夏季比秋季更潮湿,反映出季风在这一地区的活动特点,月平均水汽场从8月到9月,高湿带观点华北平原突然南跳到南海海面,表明对流层中上层的水汽场在9月份发生突变,比大气环流的10月突变早1个月完成;青藏高原夏季东南部为湿区,秋季西北部为湿区。  相似文献   

2.
西北地区夏季降水与大气水汽含量状况区域性特征   总被引:22,自引:2,他引:20  
运用NCEP/NCAR 1958~1997年格距为2.5°×2.5°的多个气象要素资料和1960~2000年西北地区95个测站的夏季降水资料,对西北地区夏季水汽含量特征及其水汽状况特征进行了分析.分析研究结果表明:(1)夏季西北地区西部整层大气水汽含量分布与降水的分布特征基本相似,而对于西北地区中东部,二者分布特征略有不同,无论干、湿年西北中东部大气水汽含量均存在相对高值区,表明西北地区整层大气水汽含量具有区域性可开发潜力.(2)西北全区夏季在20世纪60年代中期以前和80年代中期以后,大气中水汽含量较多,70年代前后较少.对于西北各个分区而言,北疆区夏季空中水汽含量最大,高原东北区最少.(3)西北地区夏季降水和西北地区西部哈萨克斯坦地区以及赤道东印度洋和赤道西太平洋交汇处的大气水汽含量相关最为显著.  相似文献   

3.
利用ERA-Interim、MERRA和NCEP/NCAR三套再分析资料,分析1979~2014年夏季青藏高原大气水汽含量的时空变化特征,同时对比了各套资料异同点,结果表明:(1) ERA-Interim和MERRA资料均显示出夏季青藏高原大气水汽含量呈现显著的上升趋势,在1994~1995年前后发生明显突变,大气水汽含量由偏低时期向偏高时期转变;而NCEP/NCAR资料并没有出现类似的显著上升趋势和突变年份;ERA-Interim资料与MERRA资料的夏季青藏高原湿池指数之间的相关性明显强于NCEP/NCAR资料与它们任何一个之间的相关性。(2)夏季青藏高原大气水汽含量呈现出自高原东南边缘地区向西北部递减的分布形式。其中,MERRA与ERA-Interim资料显示的水汽含量分布更为相似,而NCEP/NCAR资料反映的水汽含量在高原中部往北递减不明显,湿度中心较为分散。(3)从空间分布上,MERRA与ERA-Interim资料显示青藏高原大部分地区夏季水汽含量均呈显著的增加趋势,而NCEP/NCAR资料仅在高原东北部小部分区域存在显著的增加趋势。(4)从夏季青藏高原大气水汽含量的年际变化特征分析来看,ERA-Interim和MERRA资料相对于NCEP/NCAR资料也更为接近。   相似文献   

4.
新疆“96·7”特大暴雨水汽输送通道的研究   总被引:3,自引:1,他引:2  
应用GMS-5卫星逐时水汽通道TBB资料,分析61996年7月11-28日新疆特大暴雨期间对流层中上层大气水汽场的演变情况。结果表明:青藏高原中南部和印度半岛是对流层中上层大气水汽场日变化最为剧烈的地区;进入新疆境内的水汽通道有北方、西方和南方三条路径。水汽的主源地为印度半岛、孟加拉湾、青藏高原东部、四川盆地和黄河流域。青藏高原中南部是水汽的次源地。  相似文献   

5.
夏季青藏高原东南部水汽收支气候特征及其影响   总被引:6,自引:2,他引:4       下载免费PDF全文
采用1961—2005年NCEP/NCAR再分析资料, 研究了夏季青藏高原东南部水汽收支的气候特征及其影响效应。结果表明:夏季青藏高原东南部总体上是一个水汽汇区, 平均总收入为39.9×106 kg/s。东亚夏季风的建立、推进对青藏高原东南部的水汽输入有重要影响, 而青藏高原东南部的水汽输出则与夏季我国东部雨带的推进过程密切相关。该区对周边地区的水汽收支有重要影响, 是向我国西北地区东部、长江中下游地区输送水汽的重要通道, 青藏高原东南部的水汽“转运站”效应是长江中下游流域洪涝和北方夏季干旱异常的关键因子之一。青藏高原东南部东、北边界夏季水汽收支均具有准两年周期振荡特征, 并分别与长江中下游、西北地区东部夏季降水的准两年振荡特征具有一定的联系。  相似文献   

6.
西南地区东部夏季旱涝的水汽输送特征   总被引:3,自引:2,他引:1  
利用1959-2006年两南地区东部20个测站逐日降水量资料和NCEP/NCAR再分析月平均资料,分析了西南地区东部夏季旱涝年的水汽输送特征.结果表明,西南地区东部水汽来源主要有两个:第1条主要来自青藏高原转向孟加拉湾经缅甸和云南进入西南地区东部,第2条水汽经由孟加拉湾南部,强大的水汽输送带继续向东输送至中南半岛及南海,与南海越赤道气流所携带的水汽汇合后转向至西南地区东部,而由四太平洋副热带高压西侧转向的偏南水汽对向西南地区东部水汽输送也有影响.与西南地区东部夏季降水相联系的水汽通道中,印度洋水汽通道强度最强,太平洋水汽通道强度最弱.在印度季风区,偏北的高原南侧水汽通道(经向)强度远小于偏南的印度洋水汽通道.东亚季风区夏季水汽输送经向输送大于纬向输送,而印度季风区夏季水汽输送则是纬向输送大于经向输送.西南地区东部夏季降水与纬向通道的强度变化关系密切,而与经向通道的水汽输送强度变化关系不明显.当印度季风区南支水汽输送偏弱时,印度季风区北支(高原南侧)和东亚季风区向西的水汽输送偏强,使得以纬向输送为主的印度季风区经向水汽输送加大,而以经向输送为主的东亚季风区纬向水汽输送加大,从而使东亚地区的水汽输送带偏西,西南地区东部夏季降水偏多,可能出现洪涝,反之则可能出现干旱.西南地区东部夏季水汽有弱的净流出,是一个弱的水汽源区,南边界流入水汽量最多,干旱年整个区域水汽流出较常年明显,而洪涝年则有弱的净流入.夏季水汽通道水汽输送强弱变化与同期500 hPa高度场和SST场的分布形势密切相关.  相似文献   

7.
利用NCEP/NCAR Reanalysis 1°×1°格点资料和MICAPS实时观测资料,使用水汽散度垂直通量、湿螺旋度等新型诊断物理量,对2009年8月2~4日发生在重庆地区由西南低涡东移引发的暴雨做了综合分析。结果表明:水汽主要在大气低层850hPa附近积聚,上升运动强,水汽的辐合上升区域与降水大值区较吻合。500hPa湿z-螺旋度负值区水平分布与相应时段降水落区和强降水中心的分布对应较好,垂直分布上:暴雨区低层正涡度、水汽辐合旋转上升与高层负涡度、水汽辐散相配合,是触发暴雨的有利动力机制。   相似文献   

8.
本文使用美国NCAR—NCEP再分析的逐日资料,研究了1998年夏季青藏高原降水特征及大气准45d低频振荡(LFO)对长江流域低频降水的影响。研究表明,6月19日左右青藏高原雨季开始,青藏高原是水汽输送的汇区,青藏高原影响了我国东部的降水天气过程,使长江流域降水不均匀;青藏高原的大气低频振荡对东部地区低频降水也产生了影响,使低频降水带在青藏高原的东坡出现不连续现象。  相似文献   

9.
利用NCEP1°×1°再分析资料和地面加密自动站资料及卫星资料,对2012年8月16~18日盆地西北部沿龙门山脉的连续特大暴雨的形成机制进行探讨,此次暴雨过程出现在青藏高原东侧陡峭地形向盆地的过渡带,具有突出的地域特点。重点分析了青藏高原切变线东移期间,副高西北侧暴雨区内的对流触发机制和地形作用。分析表明:副热带高压前期的维持稳定与高原低值系统东移是产生强降雨的环流背景,在强降雨区域低层具有明显的风速风向辐合,东北—西南向的龙门山带即青藏高原东侧陡峭地形引起了盆地低层东南气流强烈的垂直上升运动。青藏高原东侧暴雨区最显著的热力特征是低层具有明显的高温高湿和大气不稳定层结。此次强降雨具有典型的“上干下湿,上冷下暖”的结构,正是强对流天气形成的有利条件。   相似文献   

10.
青藏高原夏季带状MCSs的分类以及形成原因   总被引:2,自引:1,他引:1  
利用2007-2011年夏季TBB(black body temperature)资料筛选出夏季青藏高原地区特征比较稳定的带状MCSs加以归类,结合NCEP资料及后向轨迹模型对其成因进行逐类探讨。结果表明,特征稳定的带状MCSs共有37例,可以按形状分为三类:北凸型、南界型和纬向型,其中北凸型发生得最多,纬向型最少。整个夏季有接近30%的时间,特别是在7月有近50%的时间都出现这种稳定的带状MCSs。高层南亚高压以及高空急流和低层500hPa切变线辐合及其南侧的高温高湿是带状MCSs生成的主要原因。500hPa上,纬向型带状MCSs一般发生在高原南北两侧较平直的东、西风气流中;北凸型发生时,高原北部为平直的西风气流,孟湾为较强的槽,高原东、南部受西南偏南气流影响;南界型时高原一般为西北气流,南侧有较强的孟湾气旋控制。围绕高原有4个水汽的辐散源地,带状MCSs对流区的水汽主要通过高原南侧和高原东南部的辐散源地进入对流区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号