首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
对风暴相对螺旋度(SRH)的定义进行了介绍。通过对2007—2008年石家庄地区27次强对流天气过程的统计分析,找出短时暴雨、冰雹和大风任意组合时高、低层SRH的不同特征,得到不同天气现象的预报指标,并利用2009年的几次强对流天气过程进行了验证。结果表明:出现短时暴雨时,SRH低经常连续较长时间为正值,但数值较小,SRH高也是以正值为主;伴有冰雹或者大风时,SRH低、SRH高的差值迅速增大,SRH高可达到100 m^2·s^-2或以上。  相似文献   

2.
应用雷达产品计算风暴相对螺旋度   总被引:11,自引:1,他引:11  
王丽荣  胡志群  匡顺四 《气象》2006,32(4):45-51
风暴相对螺旋度(SRH)反映了一定气层厚度内环境风场的旋转程度和输入到对流体内环境涡度的多少,对雷暴、龙卷和大范围暴雨的分析与预报有一定的实用价值。首先探讨了由多普勒天气雷达提供的垂直风廓线(VWP)产品计算SRH的方法和步骤。根据此方法,分别计算、分析了暴雨、冰雹、大风三个天气个例的SRH。结果表明:SRH与大面积降水过程的暴雨雨强有很好的对应关系,降水强度的变化滞后SRH强度的变化约半小时左右,可以由SRH大致估计降水加强及消亡的时间;SRH对尺度非常小的冰雹、大风等强对流天气有提前10~20分钟的预报作用。应用VWP产品计算出的SRH,可以作为实际业务工作中暴雨、冰雹、大风等强对流天气的预报因子,给预测人员预报强对流天气提供宝贵时间。  相似文献   

3.
利用常规观测资料以及气象卫星云图、雷达监测产品、NCEP/NCAR1°×1°再分析资料,对2008年6月3日发生在鄂东黄冈市的强对流天气过程进行天气学和动力学诊断分析。结果表明:这次强对流天气过程主要是华北冷涡后部偏北气流带来的强冷平流和中低层暖湿切变线所致,下层暖湿、上层干冷的对流不稳定层结为强对流的形成和发展提供了十分有利的条件;强对流天气发生在对流云团移动前方TBB等值线密集区与TBB冷中心之间的区域;典型弓形回波引起的地面大风对应的近地层径向速度图上一般表现为很强的辐散流场;当风暴相对螺旋度(SRH)大于150m2·s-2时,冰雹、大风和短时强降水等出现的可能性非常大,且SRH值越大,风暴旋转性越大,造成地面大风越强。  相似文献   

4.
利用常规探空观测和WRF分析场等资料,分析了2005—2014年沈阳地区强对流天气的气候背景特征、演变规律及日变化特征等,将强对流天气划分为冰雹、雷暴大风(≥17.2 m·s-1)、短时强降水(≥20 mm·h-1)和混合型4种类型;并分析探空资料在强对流天气潜势预报中的作用,着重探讨14时(02时)探空资料对沈阳地区强对流天气短时临近潜势预报的作用。结果表明:2005—2014年沈阳地区4种强对流天气中,以短时强降水天气发生次数最多,其次为雷暴大风天气,冰雹天气的发生次数最少,多数强对流天气发生在午后至傍晚。由合成T-Log P图的温湿廓线可知,沈阳地区短时强降水天气发生时中低层存在显著湿区,与雷暴大风和冰雹为主的强对流天气温湿廓线明显不同,多数合成T-Log P图的显著特点为中层大气干燥。冰雹型强对流天气的0℃层和-20℃层高度明显低于其他强对流天气类型的高度;冰雹型强对流天气T700-T500和T850-T500显著大于短时强降水型及雷暴大风型强对流天气,且T850-T500的指示意义更好;4种强对流天气类型平均SI均出现了正值,说明SI失去了不稳定性的指示意义;短时强降水天气的K指数明显高于冰雹天气;雷暴大风天气发生时对流有效位能明显小于其他强对流天气类型。可见,WRF中尺度模式中的T-Log P预报图对沈阳地区强对流天气的预报具有一定的指导意义。  相似文献   

5.
本文利用多普勒雷达资料垂直风廓线(VWP)产品提供发生在牡丹江一次大风天气过程资料及暴雨天气过程,计算并分析这次大风天气的风暴相对螺旋度(SRH)特征,利用垂直风廓线产品计算风暴相对螺旋度(SRH),并分析牡丹江这次大风天气过程的SRH特征。结果表明:风暴相对螺旋度(SRH)对尺度非常小的强对流大风和暴雨天气有提前10-20 min的预报作用。应用VWP产品计算出的SRH,可以作为实际业务工作中预报大风和暴雨等天气的因子。  相似文献   

6.
使用CINRAD/SB新一代天气雷达基本数据资料,设计了一套简单的强降水、强对流天气的自动预警系统。以反射率强度和直径监测和预报暴雨系统,用垂直液态水含量监测和预报大风和冰雹系统,当系统监测到这几类灾害天气时,发出声音报警,提示预报员跟踪预报。从对2005年几次暴雨、大风、冰雹过程进行回报和对2006年灾害天气过程进行预报应用来看,利用多普勒雷达资料,可以对灾害性天气过程进行有效地识别和预警。反射率大于30dbz的直径在20km以上时,有利于出现强降水过程;垂直液态水含量大于18kgm-2,直径在10km以上,有利于18m.s-1以上大风出现;垂直液态水含量大于38kgm-2,直径在10km以上,有利于冰雹出现。  相似文献   

7.
该文利用2005-2014年丰都县地面天气、探空数据、NCEP 1°×1°FNL再分析资料等,对丰都地区冰雹、雷暴大风、短时强降水这3类强对流天气特征进行统计分析,得出这3类强对流天气的时空分布特征,并从天气个例出发,利用实况资料对强对流天气的差异进行分析,为强对流天气的预警预报提供参考。得到如下结果:短时强降水通常出现在5-9月,大风通常出现在5—8月,冰雹通常出现南部的七跃山脉和北部的蒋家山和黄草山脉附近~([1]),2005—2014年间共出现了7次,3—8月均有发生。通过计算3种强对流天气环境场参量,归纳出3种物理量参数的差异:大气可降水量、AT500-T850,K指数、抬升指数(LI)、相对湿度、散度场分布等在冰雹、短时强降水和大风天气中有明显的差异,冰雹和短时强降水的AT500-T850相差了近5℃,大风天气的值介于冰雹和短时强降水之间。大气可降水量分布上,短时强降水的大气可降水量(PW)平均值为58 mm,比冰雹值大约多了10 mm,比大风值多了14 mm。短时强降水出现时几乎整层都是处于饱和的状态,冰雹和大风天气几乎只在中低层有较饱和的水汽,而高层的相对湿度平均值在40%~50%左右。对流指数方面,K指数和LI指数都很好的指示了强对流天气的发生,K指数在短时强降水发生时其平均值在39.8℃左右,较冰雹和大风分别高1.6℃和3℃。短时强降水出现环流位置大多位于600 hPa以下,而冰雹则在300 hPa左右,大风在400 hPa左右。  相似文献   

8.
利用Micaps利用TBB、雷达回波等非常规资料对2004-2010年4-9月东部农业区短时暴雨、冰雹、雷暴三类强对流典型个例进行中分析,掌握不同过程中尺度对流系统发生、发展和消亡的演变特征并试图寻找在强对流天气的短时临近预报、灾害性天气预警中的天气学指标。分析结果表明:(1)东部农业区冰雹强对流雷达特征较明显:强回波65dbz,有中气旋、15km回波顶高,短时暴雨强对流TBB特征明显,TBB亮温中心强度-60。(2)TBB对短时暴雨和冰雹强对流有较好的指示意义,并且TBB亮温强度对强对流的发生有2小时左右的提前预警量,可以很好地指示强对流的发生。  相似文献   

9.
2008年6月28日15时开始,山西省北部和东部部分地区出现强对流回波,当天下午16时起,太原本场及周边开始有大风天气,17时到20时开始出现局地的暴雨,部分地方出现短时冰雹等强对流灾害性天气。21时之后,回波向东南方移出,过程结束。本文主要对此次短时强对流天气过程的多普勒雷达图像资料进行分析,详细分析了太原(本场)周围强对流天气发生、发展、及消失的回波演变特征,并结合当时的雷电资料进行了分析。结果表明:本场未出现降水前,本场周围50km范围内非降水回波的辐合形势对天气过程的发生有很好的指示作用;强对流回波中存在逆风区,与暴雨的落区有很好的对应关系。  相似文献   

10.
1暴雨过程2004年5月,我省暴雨频繁,共出现7次区域性暴雨日;4月和6月暴雨过程较少(表1)。2强对流过程2004年4~6月,我省强对流天气较频繁,共出现8次:(1)4月23日,我省出现入春以来范围最大的强对流过程,赣州、萍乡2市出现冰雹,有14个县市出现8级以上大风,8个县市出现强降水。另外,崇义、上犹、南康、赣县等县的部分乡镇也出现冰雹。(2)4月21日,修水县局部地区出现了大风、冰雹天气,测站出现26m/s的雷雨大风,最大冰雹直径达12mm,自动气象站最大风力达29.3m/s(11级)。另外,星子、余干出现8~9级雷雨大风,永修出现强雷暴、大风、冰雹(3mm)。(3)5月…  相似文献   

11.
利用辽宁自动气象站逐小时降水资料和1。X1。NCEP资料,对200l-2010年汛期共25次辽宁暴雨过程进行分析,以期得到暴雨过程时间分布特征和典型影响系统。结果表明:25次辽宁暴雨过程中有7次为阶段性暴雨即两段持续性暴雨过程中间有明显的降水减弱与天气系统转换,占总数的28%;辽宁暴雨过程高层(以200hPa为代表)主要影响系统为高空急漉,中层(以500hPa为代表)主要影响系统92%为高空槽(其中57%为高空槽与副热带高压共同影响),低层(以850hPa为代表)诱发系统88%为气旋(或倒槽)顶部(或东部)切变线、12%为鞍形场切变。阶段性暴雨过程两阶段的高中层影响系统基本一致,高层影响系统均为高空急流,中层多为副热带高压和高空槽的共同影响、少数仅受高空槽影响,在低层,阶段性暴雨过程均伴随着低层要素场(特别是风场)的调整,导致低层天气系统的转换或强度的变化,低层要素场的调整阶段即为阶段性强降水的间歇期;阶段性暴雨过程在天气系统的配置及时段长度方面无明显特征,即在暴雨过程发生初期,从这两方面均无法判断该暴雨过程是否将发展为阶段性暴雨。25次辽宁暴雨过程中,丹东本溪地区17次降水有陡增现象,这与丹东、本溪地区处于长白山东南部和丹东地区东南侧临海有密切关系。  相似文献   

12.
2001-2010年辽宁区域性暴雨阶段性特征   总被引:4,自引:0,他引:4       下载免费PDF全文
利用辽宁自动气象站逐小时降水资料和1°×1°NCEP资料,对2001-2010年汛期共25次辽宁暴雨过程进行分析,以期得到暴雨过程时间分布特征和典型影响系统.结果表明:25次辽宁暴雨过程中有7次为阶段性暴雨即两段持续性暴雨过程中间有明显的降水减弱与天气系统转换,占总数的28%;辽宁暴雨过程高层(以200 hPa为代表)...  相似文献   

13.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1〈0同时MPV2≥0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。  相似文献   

14.
对乌东德水电站开建以来坝区暴雨及伴随的短时强降水时空分布进行统计研究,并划分出暴雨天气概念模型。结果表明:乌东德水电站开建以来坝区共出现18个暴雨日,平均3.0个/a,暴雨自6月上旬开始出现,到10月上旬结束,出现暴雨最多的季节是夏季,多为范围小的局地性暴雨出现。暴雨日数、年平均降水量、20~30mm h-1及≥20mm h-1的短时强降水的空间分布均呈现“西北多东南少”的特征。20~30mm h-1的短时强降水发生频次最多(占63.6%),其次为30~40mmh-1(占27.3%),40~50mm h-1最少(仅占9.1%)。短时强降水及不同等级短时强降水均表现为夜间高发、白天低发的日变化特征。总结归纳出切变冷锋型8次(占44.4%)、两高辐合型4次(占22.2%)、西南涡型2次(占11.1%)、孟加拉湾风暴型2次(占11.1%)、切变线型1次(占5.6%)和高空槽型1次(占5.6%)六类暴雨天气概念模型。   相似文献   

15.
为了研究甘肃东南部相同气候背景条件下极端暴雨天气的成因,提高极端暴雨强度和落区预报的准确率,利用NCEP再分析、自动气象站降水、常规观测资料及卫星云图资料,对2013年8月7日和2017年8月7日发生在甘肃东南部两次极端暴雨进行对比分析。结果表明:两次极端暴雨天气过程都伴随着短时强降水等强对流性天气,具有降水量大、雨强强、灾害重的特点,其中冷空气的强度对暴雨落区、空间分布以及影响系统移动以及对流强度产生重要影响。在强冷空气和高空低槽、低层切变线影响下,暴雨区偏南,强降水区域小,持续时间短,不稳定条件更好,对流强度更强;在弱冷空气和高原槽、低层低涡、低空急流作用下,暴雨区偏北,强降水范围大,持续时间长,大气湿层厚度大,低层水汽辐合强度、涡度以及垂直速度更强,降水效率更高,但对流强度相对较弱。卫星云图上,在强冷空气的影响下对流发展旺盛,形成强中尺度对流云团,对流云团呈带状;在弱冷空气作用下对流云团尺度小,发展范围小,有暖云降水特征,降水效率高。  相似文献   

16.
应用常规观测资料、NCEP再分析资料和卫星云图产品,对2011年7月31日黑龙江省西部暴雨天气成因进行诊断分析。讨论了产生暴雨的天气系统特征,大气不稳定条件及产生暴雨的水汽条件和动力触发机制。结果表明:暴雨是由低涡、低涡槽前暖湿气流与冷空气的共同影响产生的。低层强盛的偏南气流建立起水汽通道,将水汽源源不断地向暴雨区输送。低层增温增湿使得大气层结不稳定。低层较强的西北气流与强盛的东南暖湿气流汇合,产生强切变,辐合上升运动增强,为暴雨的产生提供了动力条件,有利于不稳定能量释放。高层辐散与低层辐合相配合,有利于上升运动发展和维持。地面中尺度低压和中尺度辐合线为中尺度云团的发展和维持提供了条件;中尺度云团在暴雨区旋转停留近21 h,这是暴雨发生的主要原因。  相似文献   

17.
2004-2009年大连地区短时暴雨分析预报   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高对短时暴雨的预警能力,利用2004-2009年3-10月大连降水资料和天气雷达回波资料,对此期间的45次暴雨过程进行气候特征和活动规律等进行分析。结果表明:有32次过程出现短时暴雨,其中7-8月出现27次,占全部短时暴雨的84.4%。造成这些短时暴雨的雷达回波,主要是源于大连西南、南和东南部沿海的介于强对流性和稳定性之间的混合性降水回波,占70%以上。将短时暴雨降水资料扩大到乡镇级自动站与雷达回波分析,结果发现:造成大连地区短时暴雨的直接原因是突发于混合性云团中的中-β尺度回波。通过归纳定义“混合性中-β尺度回波”模型,并结合其他探测信息和技术手段,可以提高短时暴雨的预警能力。  相似文献   

18.
2009年深冬辽宁雨转暴雪和大雪过程对比分析   总被引:2,自引:1,他引:1       下载免费PDF全文
针对辽宁2009年2月中旬旬初雨转暴雪过程和旬末大雪过程,利用常规观测资料和NCEP 10×10 逐6 h分析资料,从环流形势、影响系统、水汽和动力条件及热力结构等方面入手,对这两次过程进行对比分析。结果表明:这两次过程在许多方面显著不同。两次过程均发生在乌山阻高稳定的形势下,均受中纬度东移的中尺度低值系统影响,但雨转暴雪过程中高纬度为两脊一槽型,中纬度短槽与南支低槽结合携强冷空气东移,与低空急流在辽宁上空交汇。大雪过程为东低西高型,中纬度气旋性波动东移,切变线北抬过程中与西南暖湿气流作用影响辽宁。两次过程均发生在600 hPa以下相对湿度为80%以上的大气中,均具有低层辐合高层辐散的特征和深厚的上升运动,但雨转暴雪过程水汽含量更高,辐合层更深厚、强度更强,垂直速度较大雪过程大一个量级;两次过程都有明显的风垂直切变特征,但雨转暴雪过程发生在风垂直切变迅速增大的条件下,大雪过程风垂直切变相对稳定;雨转暴雪过程降水随湿位涡的发展而增强,两者有较好的对应关系,而大雪过程湿位涡表现微弱;雨转暴雪过程槽前0 ℃层达到850 hPa,槽后各层温度迅速下降至0 ℃以下,而大雪过程整层温度始终在0 ℃以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号